Uomo e piante 6/dimoltialtri

Ritorno dopo un momentaneo ma necessario “stacco” alla mia soap su uomini e piante. Se siete ancora con me 🙂 siamo arrivato alla puntata numero 6, e le precedenti sono qui, qui, qui, qui, e qui

E’ arrivato il momento di esplicitare meglio l’ipotesi co-evolutiva della nascita della medicina, e per fare ciò è necessario fare un passo indietro per giustificare l’idea che esista una connessione significativa e preculturale tra uomo e piante.

La teoria unificata delle comunicazioni cellulari
Come ci ricorda Meinwald [1] il nostro è un modo di suoni e visioni, e tendiamo a non renderci conto degli eventi chimici che ci circondano, del fatto che tutti gli organismi emettono e rispondono a segnali di tipo chimico, formando una vasta rete di interazioni comunicative fondamentali, attrattive, difensive, associative, ecc.

Fin dalle origini della vita infatti, il problema che i primi organismi cellulari hanno dovuto risolvere è stato quello della comunicazione tra cellula ed ambiente circostante e tra cellula e cellula, ed il problema è stato risolto da tutti gli organismi nello stesso modo, attraverso il linguaggio di molecole che possono penetrare le membrane e interagire con il nucleo oppure che trovano recettori specifici sulla membrana cellulare che mediano poi dei cambiamenti interni.

Ragionando da una prospettiva abbastanza ampia è quindi ovvio che uomini e piante, anzi, animali e vegetali, debbono mostrare dei legami, non soltanto filogenetici ma di relazione, comunicativi: affinché la vita di organismi diversi, anche appartenenti a Regni differenti,  possa prosperare in uno stesso ambiente, vi sono state, e vi devono essere state, continue relazioni mediate da un linguaggio molecolare.

La “teoria unificata delle comunicazioni cellulari” vuole che queste relazioni, ed i percorsi biogenetici del metabolismo secondario che creano le molecole messaggere, siano nati molto presto nella storia dell’albero evolutivo e siano spesso comuni tra i Regni Animalia e Vegetalia. [2] Ciò significa che nonostante la distanza filogenetica tra organismi appartenenti ai due Regni, essi possano però riconoscere gli stessi messaggeri. [3] Questo dato di base spiega la possibilità delle interazioni tra piante ed animali ed il ruolo di intermediari che hanno i metaboliti secondari.

Come rispondere all’ambiente

La possibilità per una pianta di “leggere” i messaggi di altre piante le permette di rispondere a degli indizi ambientali modificando il proprio schema di risposta. Organismi animali possono usare questi indizi per riconoscere lo stato dell’ambiente esterno ed “decidere” come allocare le proprie risorse energetiche.

Un esempio di questo utilizzo dei messaggi molecolari negli animali superiori potrebbe essere legato al fenomeno della senescenza. Organismi che si siano evoluti in ambienti mutevoli possono trarre vantaggio dalla capacità di puntare su un successo riproduttivo immediato a scapito della longevità in caso di ambiente più favorevole, o di puntare sulla longevità e su una ritardata maturazione sessuale in caso di condizioni sfavorevoli. [4]

Esempi di questi percorsi di allarme comprenderebbero varie chinasi legate alla sopravvivenza delle cellule, i fattori di trascrizione NRF2 e CREB, e le deacetilasi istoniche della famiglia della sirtuina, una proteina nota come Sir2 nei lieviti e SIRT1 nell’uomo.

Le Sir2 (Silent information regulator 2), sono presenti in tutti gli organismi, dagli eubatteri agli eucarioti, compresi gli esseri umani. Svolgerebbero due funzioni primarie nei mammiferi: la prima è  coordinare gli schemi di espressione genica (ovvero decidere quali geni sono attivati e quali disattivati in ogni singola cellula, per evitare ad esempio che una cellula renale inizi ad esprimere tendenze epatiche) e mantenere la stabilità di certe regioni cromosomiche e sopprimere l’esagerata espressione di certi geni (silenziamento genico) aumentando la stabilità del genoma; la seconda è funzionare da agenti riparatori emergenziali in caso di danno al DNA. [5] Il problema sorge dal fatto che quando le sirtuine sono occupate a riparare il DNA non regolano più l’espressione dei geni. Fino a che i danni al DNA sono rari le sirtuine riescono a compiere entrambi i compiti con efficienza, ma quando questi danni aumentano (tipicamente con l’età) la de-regolazione dell’espressione genica diventa cronica, e questo sembra essere legato, nei modelli animali utilizzati, a fenotipi di senescenza. [6]

Negli ultimi decenni sono stati scoperti molti composti di origine vegetale (tre esempi sono resveratrolo, i sulforafani ed i curcuminoidi) sintetizzati in risposta a vari tipi di emergenza (siccità, radiazioni, attacchi di insetti, infezioni, ecc.) per stimolare diverse risposte adattive e la rigenerazione cellulare stimolando una maggior espressione di sirtuine ed allungando la vita media,  proteggendo le cellule da lesioni stimolando la produzione di antiossidanti, fattori neurotropici ed altre proteine correlate allo stress.

Il modello coevolutivo

Ma il legame che viene proposto va oltre al dato generalizzato della teoria unificata delle comunicazioni cellulari, anche se si fonda su di essa. Esso si basa sull’ipotesi che l’utilizzo delle piante come fonte privilegiata di nutrienti abbia plasmato la fisiologia dell’uomo.

I nostri antenati, secondo l’ipotesi antropologica attualmente più accreditata, erano onnivori-foliovori, nel senso che avevano una decisa preferenza, certamente ispirata dalla necessità, per le piante ed in particolare per le foglie. E’ molto probabile che l’uomo preferisse sempre cibo denso in energia e povero di composti tossici (carne, tuberi, frutta) piuttosto che foglie; d’altro canto tuberi e frutti non sono disponibili tutto l’anno e sono più difficili da scovare, mentre le foglie sono più facilmente sfruttabili perché sono sempre presenti su tutto il territorio antropizzato, ed è probabile che siano sempre stati parte della dieta, oltre ad essere un “salvavita” in caso d’emergenza.

Questa forzata “convivenza alimentare” con le piante ci ha costretti a confrontarsi con molteplici messaggi chimici (spesso difensivi e quindi tossici) ai quali è stato necessario fornire delle risposte, cioè adattarsi, in qualche modo co-evolversi con essi e con le piante che li contenevano.

La tesi sostenuta da un certo filone antropologico (vedi Johns [12]) è che l’adattamento abbia fatto sì che le proprietà che rendevano le piante tossiche o non commestibili (limitando le possibilità di alimentazione dell’uomo) siano le stesse che le hanno rese attive a livello farmacologico (rappresentando quindi un fattore di promozione della salute). La nostra specie, nell’adattarsi alle tossine delle piante, le ha portate ad essere una parte essenziale della nostra ecologia interna, le ha “introiettate” facendo sì che non ci danneggiassero (o almeno non ai livelli ai quali le ingeriamo) ma anzi che potessero esserci utili.

Ne consegue l’ipotesi che gli esseri umani selezionino le piante sulla base della loro composizione chimica e che l’ingestione dei composti chimici vegetali sia parte di una risposta adattiva integrata che possiede elementi biologici e culturali, e che la nostra eredità biologica, associata allo snodo essenziale costituito dalla rivoluzione neolitica (la domesticazione delle piante e la loro coltivazione), pongano le basi per la nascita dell’uso medicinale delle piante. [7]

Questa ipotesi è andata rafforzandosi nei decenni grazie ai molti studiosi che l’hanno corroborata con vari pezzi di puzzle.


Prove indirette: i nostri simili
Un supporto, seppur indiretto, alla tesi che l’utilizzo delle piante a scopo medicinale da parte dell’uomo abbia origini preculturali e coevolutive viene dagli studi sulla zoofarmacognosia, ovvero sull’automedicazione con le piante da parte degli animali non umani. [8]

Glander, Lozano, Huffman ed altri autori portano vari esempi di zoofarmacognosia, alcuni dei quali riporto di seguito. [9]

Gli elefanti malesi si cibano di una leguminosa [Entada schefferi Ridley – Fabaceae] prima di intraprendere un lungo cammino; in India i cinghiali selvatici dissotterrano e si nutrono in maniera selettiva delle radici di Boerhavia diffusa L. [Nyctaginaceae], usate anche dagli esseri umani come rimedio antelmintico, mentre i maiali si ciberebbero delle radici del melograno [Punica granatum L. — Punicaceae] per la sua tossicità sui nematodi. Gli scimpanzè maschi della Tanzania occidentale, nei periodi dell’anno nei quali aumentano le infestazioni di nematodi, utilizzano le foglie di Aspilia spp. (spesso A. mossambicensis) [Asteraceae] seguendo un rituale molto particolare e completamente diverso dalla ritualità normalmente associata all’alimentazione: arrotolano le foglie, le mettono tra lingua e guancia e poi le ingoiano senza masticarle.

Va notato che Aspilia contiene principi attivi antibatterici, antifungini e antelmintici (thiarubrina A), e che la modalità di assunzione potrebbe favorire l’assorbimento di tali composti attraverso le mucose della guancia. Gli scimpanzè mostrano altri comportamenti molto interessanti: le femmine ingeriscono foglie di Lippia plicata Bak. [Verbenaceae] (usata dagli indigeni come stomachico ed insetticida) quando sembrano avere dei disturbi gastrointestinali, e vari maschi malati sono stati notati mentre succhiavano il midollo del fusto di Vernonia amygdalina Del. [Asteraceae], una pianta molto amara (contiene lattoni sesquiterpenici amari, antelmintici e antischistosomiaci), raramente usata a scopo alimentare ma comune nella medicina tradizionale dell’Africa orientale in caso di febbri malariche, schistosomiasi, dissenteria amebica, elmintiasi, diarrea, mal di stomaco, inappetenza e scorbuto, e dagli agricoltori in caso di parassiti intestinali dei maiali.

Negli esseri umani la Vernonia è efficace contro Giardia lamblia, ossiuri e nematodi dei generi Ancylostoma, Uncinaria, Necator. E’ interessante notare come i primati utilizzino raramente le foglie e la corteccia della pianta, nonostante la maggior concentrazione in composti attivi. Il fatto che queste parti della pianta contengano anche composti tossici è una possibile spiegazione di questo comportamento. I primati utilizzano in maniera simile anche i fusti di Palisota hirsuta (Thunb.) K. Schum. [Commelinaceae] e Eremospatha macrocarpa (Mann and Wendl.) Wendl. [Palmae].

Alouatta palliata (una scimmia urlatrice) mostra una frequenza molto ridotta, rispetto agli scimpanzè, di carie o gengiviti, dato in parte spiegabile con la dieta povera in frutta zuccherina, ma forse anche con il consumo di anacardi [Anacardium occidentale L. — Anacardiaceae], frutti che contengono acido anacardico e cardolo, composti attivi contro i batteri gram-positivi tipici della carie; le stesse scimmie urlatrici sono soggette a parassitosi gastrointestinale, ma quelle di loro che si alimentano anche con frutti dei ficus [Ficus spp. — Moraceae] lo sono di meno. Dato che il latice di Ficus è antelmintico, è possibile che il consumo di foglie e frutti contribuisca ad abbassare il carico di parassiti. [10]

Uno dei primati meno comuni (Brachyteles arachnoides) è preda, come altri, di parassitosi intestinale, ma tra i gruppi che ne soffrono di meno si nota uno schema di alimentazione particolare.  All’inizio della stagione delle piogge questi individui fanno uno sforzo particolare per mangiare piante che prima non assaggiavano, in particolare le leguminose Apuleia leiocarpa (J. Vogel) J.F. Macbr. e Platypodium elegans Vogel. [Fabaceae] (ricche in composti antimicrobici e isoflavoni).

I Colobus rossi normalmente preferiscono foglie giovani, ricche in proteine e povere in tannini ed altri composti fenolici, ma di quando in quando mangiano foglie ad elevato contenuto in tannini, che potrebbero servire per detossificare gli alcaloidi e ridurre il gonfiore intestinale. [11]

I babbuini soffrono comunemente di schistomatosi, ed è stato notato, nei gruppi che vivono presso le cascate Awash (Etiopia), un comportamento particolare degli individui che ne sono affetti gravemente: essi si nutrono di foglie e frutti di Balanites aegyptiaca (L.) Del. [Zygophyllaceae], che contengono diosgenina, attiva contro Schistosoma cercariae.

Prove dirette: la fisiologia ed il comportamenti umani. [12]
Se l’ipotesi appena esposta è valida, ci deve essere rimasta qualche traccia del processo co-evolutivo nel nostro organismo, sia di tipo fisiologico che comportamentale. La difficoltà sta però nel riconoscere se e quali di queste caratteristiche siano tracce coevolutive, perché ci è dato interpretarle come tali solo a posteriori, senza il beneficio di una prova diretta, ma solo tramite inferenze.

Ad esempio, gli esseri umani hanno un intestino adatto a cibi densi di nutrienti ma mantengono una certa capacità di digerire fibre, e possono sopportare dosi relativamente elevate di composti allelopatici; l’uomo è inoltre capace di sopperire al proprio fabbisogno di acidi grassi essenziali tramite i loro precursori presenti nei vegetali.  Queste caratteristiche potrebbero indicare una consuetudine dell’uomo con le piante. Si è anche ipotizzato che la preferenza dell’uomo per il sale (di più di un ordine di magnitudo superiore al suo fabbisogno) potrebbe essere spiegato con la carenza di sodio nelle piante della savana dove Homo si è evoluto, e, come si è visto più sopra, l’incapacità di sintetizzare la vitamina C potrebbe essere spiegata con la sua ubiquità ed abbondanza nei vegetali.

La presenza nella saliva dell’uomo di proteine ricche in prolina (PRP) è un altro importante esempio: l’uomo è in grado di rispondere all’ingestione di tannini mantenendo le parotidi in uno stato di induzione, tanto che il 70% delle secrezioni salivari è del tipo PRP: queste PRP possono servire a legare i tannini presenti nel cibo e renderli meno irritanti per il tratto gastrointestinale e forse per renderli meno attivi sul cibo che ingeriamo (riducendone gli effetti antinutrizionali).

Esempi più generici del rapporto dell’uomo con sostanze velenose sono il vomito ed i sensi chimici.


Il vomito è un istintivo meccanismo di rigetto di una sostanza che si è immediatamente riconosciuta come tossica o in qualche modo non desiderata.

I sensi chimici, gusto ed olfatto mostrano di poter discriminare sostanze vegetali potenzialmente pericolose da altre potenzialmente utili (discriminando tra amaro e dolce ad esempio), e mostrano di poter attivate risposte condizionate molto potenti, in particolare quelle negative associate al cibo. Ciò significa che a seguito di un malessere gastrointestinale legato temporalmente (a prescindere dal legame causale) all’ingestione di cibo, il sapore e l’odore di quel cibo saranno legati al malessere rendendo molto difficile cibarsene ancora. Questo è un tipo di meccanismo di apprendimento, perché una sostanza che abbia provocato un malessere gastrointestinale probabilmente è tossica, o comunque dobbiamo considerarla come tale. [13]

C’è una differenza importante tra olfatto e gusto, perché il primo, essendo molto più plastico del gusto, è meno legato alla percezione negativa, mentre quest’ultimo, essendo limitato alla discriminazione di quattro o cinque sapori, è più fortemente e più meccanicamente legato alla risposta condizionata.


Altro indizio molto rilevante è la presenza di enzimi detossicanti a livello epatico (e in misura minore renale, intestinale e polmonare), enzimi che rendono meno tossiche e facilmente eliminabili varie sostanze di origine vegetale, e che non sono molto specializzati, non hanno cioè la capacità di detossificare sempre e con efficienza una sostanza particolare, ma hanno la capacità plastica di adattarsi a molti problemi diversi, e questo è un indizio che si situa bene nel quadro di una dieta umana prevalentemente onnivora-foliovora (da cui l’esistenza di enzimi che hanno come substrato delle sostanze vegetali), con fonti alimentari molto diversificate (da cui la necessità di plasticità nella risposta).

Possiamo considerare il ruolo degli enzimi detossificanti in congiunzione con la neofobia, cioè il fatto che l’uomo adulto mostri la tendenza ad esser circospetto rispetto alle sostanze che deve assumere. [14]

Dato che il meccanismo epatico esiste per detossificare una sostanza potenzialmente tossica, il fatto di assaggiare sempre piccole quantità di un cibo o di una sostanza nuova permette di non avvelenarsi accidentalmente, e di non sovraccaricare i meccanismi detossificanti. Quindi la combinazione dei due meccanismi ci può permettere di assaggiare un cibo nuovo che può essere pericoloso senza però morire dopo averlo assaggiato.

————————————-

Note al testo

[1] Eilser T, Meinwald J (1995) “Preface” in Thomas Eilser and Jerrold Meinwald (eds) Chemical ecology: The Chemistry of Biotic Interaction National Academy Press Washington, D.C. 1995

[2] Roth J., Leroith D. (1987) The Sciences, May-June:51

[3] Lamming D.W., Wood J.G., Sinclair D.A. (2004) “Small molecules that regulate lifespan: evidence for xenohormesis”. Mol Microbiol; 53(4):1003-9; Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., Lavu, S., Wood, J.G., et al. (2003) “Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan”. Nature 425: 191–196; Mattson MP, Cheng A. (2006) “Neurohormetic phytochemicals: Low-dose toxins that induce adaptive neuronal stress responses”. Trends Neurosci; 29:632–9

[4] Kuzawa C et al. (2008) “Evolution, developmental plasticity and metabolic disease” in SC Stearns and JC Koella (eds.) Evolution in health and disease 2nd edition Oxford UP; Austad SN, Finch CE (2008) “The evolutionary context of human aging and degenerative disease” in in SC Stearns and JC Koella (eds.) op. cit.; Ackermann M e Pletchr SD (2008) “Evolutionary biology as a foundation for studying aging and origin-related disease”. In SC Stearns and JC Koella (eds.) op. cit.

[5] Guarente, L. (2000) “Sir2 links chromatin silencing, metabolism and aging” Genes Dev 14:1021-1026

[6] Oberdoerffer et al (2008) “SIRT1 redistribution on chromatin promotes genome stability but alters gene expression during aging”; Cell 135,  6

[7] Con questo non si intende proporre l’appiattimento della cultura sulla natura, la riduzione della medicina a fatto biologico e della malattia a rapporto ecologico. Nè si suppone che l’utilità presente dei composti xenobiotici per l’organismo che li ingerisce siano in parte o del tutto riconducibili ad adattamenti passati. Una origine evolutiva, spiega bene Gould (Gould, S.J. “Darwin tra fondamentalismi e pluralismo”. In Pino Donghi (a cura di) La medicina di Darwin. Roma, Laterza, 1998) non si appiattisce su quella adattiva, perché la selezione naturale non esaurisce tutti i meccanismi evolutivi, e l’enorme chemiodiversità delle piante (che esprimono circa i 4/5 di tutti i i composti farmacologicamente attivi conosciuti) offrirebbe comunque materiale farmacologicamente attivo al di là dei rapporti ecologici animale-pianta.

[8] Nel lavoro seminale in questo campo (Rodriguez, E., R. Wrangham. H. Stafford e Downum K. eds., (1993) “Zoopharmacognosy: The use of medicinal plants by animals”. Recent advances in phytochemistry, 89-105) gli autori (responsabili anche del conio del termine zoofarmacognosi) scrivono che:

“The combination of natural products, trichomes and other leaf features are important in the fitness of wild animals,”…“the observation of animals using plants is not new since Amazonian Indians and many people of the African forests tell of how animals use plants and how they copy the animals”

[9] Glander K.E. “Nonhuman primat self-medication with wild plant foods”. In N.L., Etkin  (Ed.), 1994 op. cit. pp. 227-239; Lozano, G.A. (1998) “Parasitic stress and self-medication in wild animals” Advances in the study of behaviour. 27: 291-317; Huffman M.A. (2001) “Self-medicative behavior in the African Great Apes: An evolutionary perspective into the origins of human traditional medicine”. BioScience.; Vol. 51(8): pp. 651-661.

[10] Una ipotesi più difficile da sostanziare ma affascinante è quella che vuole che l’ingestione di piante da parte delle femmine di Alouatta serva a modificare il normale rapporto maschio/femmina della prole, Glander (1994 op. cit.) ipotizza che alcuni composti delle piante ingerite possano modificare la concentrazione ionica delle mucose vaginali delle femmine, e che questo a sua volta possa modificare selettivamente l’accesso degli spermatozoi che portano un cromosoma X rispetto a quelli a Y dato che X è elettropositivo mentre Y è elettronegativo.

[11] Lo stesso fanno altri primati ed è difficile spiegare questo comportamento senza chiamare in causa la zoofarmacognosi anche perché i tannini sono forse l’unico gruppo di composti che non sono detossificabili se non parzialmente. I tannini possono legarsi e precipitare, e quindi inattivare, le molecole azotate, come appunto gli alcaloidi. Interessante notare che i Colobus mangiano anche terre ricche in caolino (geofagia), che grazie alla loro elevata capacità di adsorbimento possono intrappolare e rendere indisponibili all’assorbimento varie tossine (e nutrienti).

[12] Johns T (1990) The Origins of Human Diet and Medicine. University of Arizona Press; Consiglio, C. e Siani V. (2003) Evoluzione e alimentazione: il cammino dell’uomo. Torino: Bollati Boringhieri

[13] Le risposte condizionate positive, cioè quelle che potrebbero essere molto utili, sono invece molto meno forti, più labili, di quelle negative.

[14] Il bambino è molto meno neofobico, ed anche questo è un meccanismo evolutivo: esso deve infatti poter fare esperienza del mondo, deve poter “assaggiare” in vari modi la realtà che lo circonda. L’uomo adulto invece, raggiunto il suo bagaglio di esperienze, sta più attento.

Ancora sulle sirtuine

Un articolo appena pubblicato sul numero di novembre di Cell, (Oberdoerffer et al (2008) “SIRT1 redistribution on chromatin promotes genome stability but alters gene expression during aging”; Cell 135,  6) aggiunge un tassello importante alla ricerca sul ruolo delle sirtuine nei processi di degenerazione del DNA e quindi cellulare, e del possibile ruolo di quelle molecole di origine vegetale che influenzano l’espressione delle sirtuire, come il resveratrolo.

In particolare lo studio avrebbe rivelato che le sirtuine hanno due funzioni primarie negli organismi dei mammiferi: la prima è  coordinare gli schemi di espressione genica, ovvero decidere quali geni sono attivati e quali disattivarti in ogni singola cellula, per evitare ad esempio che una cellula renale inizi ad esprimere tendenze epatiche; la seconda è funzionare da agenti riparatori emergenziali in caso di danno al DNA. Il problema sorge dal fatto che quando le sirtuine sono occupate a riparare il DNA non regolano più l’espressione dei geni. Fino a che i danni al DNA sono rari le sirtuine riescono a compiere entrambi i compiti co efficienza, ma quando questi danni aumentano (tipicamente con l’età) la de-regolazione dell’espressione genica diventa cronica, e questo sembra essere legato, nei modelli animali utilizzati, a fenotipi di maggior invecchiamento.

L’utilizzo di extra sirtuine o di un attivatore delle sirtuine come il resveratrolo ha  aumentato la vita media dei topi dal 24 al 46%.

Ritorna quindi l’interessantissimo argomento di utilizzare metodi di metaregolazione piuttosto che intervenire a livello degli effettori o degli effetti (ovvero, invece di tentare di riparare il DNA, meglio aumentare i sistemi endogeni di riparazione, al contempo ripristinando la funzionalità di regolazione dell’espressione genica).

Nonostante questo studio sia stato effettuato su modelli animali ed utilizzando solo il resveratrolo, il fatto che il meccanismo delle sirtuine sembri essere comune a moltissime forme di vita appartenenti ai Regni vegetale ed animale, e i dati in nostro possesso su altre molecole con azione simile al resveratrolo (catechine, curcuminoidi, ecc.) o sugli antiossidanti (leggi qui per essere educato da Meristemi sull’argomento) lascia ben sperare sulla generalizzabilità del dato.

Coevoluzione, ormesi, resveratrolo e sirtuine

La nostra lunghissima coevoluzione con i vegetali ha fatto si che il nostro organismo si sia dovuto adattare alla presenza di complesse miscele di metaboliti secondari di difesa delle piante, metaboliti che, originatisi come elementi di pericolo, sono stati trasformati, biologicamente prima e culturalmente più tardi, in agenti terapeutici. Ci troviamo quindi in una situazione dove cibo e medicina sono fortemente legati, nel senso che l’effetto di queste sostanze sulla nostra salute dipende molto dal nostro agire su di loro, piuttosto che dal loro agire su di noi, come è il caso dei veleni. Si parla in questo senso di ormesi (o xenormesi, per sottolineare il contatto con un composto estraneo all’organismo), ovvero di quelle azioni benefiche che risultano dalla risposta dell’organismo ad uno stressore a bassa intensità (in questo caso il metabolita secondario che a dosi elevate può essere dannoso).

Quindi il metabolita, a dosi subtossiche, attiverebbe i percorsi di risposta stressoria adattivi proprio in virtù del suo essere una tossina alla quale l’organismo si è “adattato”. Gli effetti salutari delle diete ricche in vegetali e frutta freschi non sarebbero salutari quindi solo per la presenza di antiossidanti, ma per una azione più profonda e regolatoria. Ci sono anche casi di metaboliti secondari che sembrano stimolare le risposte stressorie pur non essendo tossici neppure a dosi elevate, come ad esempio per i curcuminoidi.

Un composto xenormetico è spesso un composto polifenolico sintetizzato da specie primordiali per stimolare diverse risposte adattive in risposta a vari tipi di emergenza (siccità, radiazioni, attacchi di insetti, infezioni, ecc.). Le piante superiori avrebbero mantenuto questa abilità, e altri organismi (in questo caso l’uomo) potrebbero sfruttare questi composti come componente del loro proprio sistema di trasmissione dei segnali, in virtù del fatto che i meccanismi di base della risposta stressoria utilizzano le stesse molecole sia in piante sia in animali. Esempi di questi percorsi di allarme comprenderebbero varie chinasi legate alla sopravvivenza delle cellule, i fattori di trascrizione NRF2 e CREB, e le deacetilasi istoniche della famiglia della sirtuina, una proteina nota come Sir2 nei lieviti e SIRT1 nell’uomo. Le Sir2 (Silent information regulator 2), sono proteine presenti in tutti gli organismi dagli eubatteri agli eucarioti, compresi gli esseri umani (scarica qui un articolo esaustivo).

Quindi composti come il resveratrolo, i sulforafani ed i curcuminoidi possono proteggere le cellule da lesioni stimolando la produzione di atiossidanti, fattori neurotropici ed altre proteine correlate allo stress.

Un articolo nell’ultimo numero di Cell Metabolism contribuisce a chiarire il ruolo che il resveratrolo (e più in generale altri composti che interagiscono con le sirtuine)  possono avere sui processi metabolici nei mammiferi, interagendo con la SIRT1 e “ingannando” il nosro organismo facendogli credere di essere di fronte ad un periodo di bassa disponibilità alimentare. Lo studio è stato fatto con un composto sintetico (SRT1720) su topi geneticamente selezionati, ed ha quindi una generalizzabilità non particolarmente elevata, soprattutto se intendiamo applicarlo all’utilizzo di estratti vegetali, ma se preso nel contesto degli altri studi sperimentali e sugli studi sul resveratrolo, aggiunge una tessera importante al mosaico.

Il composto aumenta la resistenza durante la corsa protegge dall’obesità e dalla resistenza insulinica indotte con la dieta artificiale nei topi, aumentando il metabolismo ossidativo nel muscolo scheletrico, nel fegato e nel tessuto adiposo marrone. Questo risultato supporta la nozione che basse dosi di composti xenormetici possano influenzare il metabolismo umano, ridurre il rischio di prediabete, diabete tipo 2, aterosclerosi, obesità addominale e forse anche processi di tumorigenesi.

Se il nostro organismo ha “interiorizzato” i nostri rapporti ecologici con le piante ed i loro veleni, ciò significa anche che ci siamo evoluti in modo da affrontare complessi di molecole associati a dosaggi moderati e per lungo tempo, e non molecole isolate a concentrazioni molto elevate per brevi periodi. La ricerca sperimentale mostra che le piante medicinali (come miscele molecolari complesse ad azione multitasking) esercitano simultaneamente la loro influenza su diversi livelli e diversi meccanismi tumorali, e le ricerche epidemiologiche supportano questo dato mostrando, ad esempio, che le popolazione del sud est asiatico hanno percentuali minori di rischio tumorale rispetto alla loro controparte statunitense, e si ritiene che il consumo alimentare di piante quali l’aglio, la curcuma, zenzero, peperoncino, soia e Brassicaceae sia alla base di questo fenomeno di “chemioprevenzione”.