Indici quantitativi in etnobotanica

Nel post precedente (qui) ho iniziato a parlare del problema della valutazione e dell’utilizzo dei dati etnobotanici e storici. Ho analizzato uno dei punti critici del processo di indagine, cioè la valutazione quantitativa della segregazione delle piante medicinali nelle famiglie botaniche, concludendo che questa segregazione esiste e sembra indicare una scelta non casuale delle piante da parte dei gruppi umani. Quali poi siano le ragioni per questa scelta è naturalmente un problema più complesso, e che quasi certamente non permette risposte mono-causali.

E’ stato proposto [1] che gli schemi di classificazione che osserviamo nelle e tra le società siano il risultato di:

  1. predisposizioni cognitive universali risultanti dall’evoluzione.
  2. l’oggettiva struttura tassonomica del bioma locale che non possiamo fare a meno di riconoscere.
  3. interpretazioni culturali relative.
  4. meri artefatti dei metodi di ricerca.

Il sapere tradizionale

Ma prima di affrontare questo argomento è necessario evocare il convitato di pietra di questa discussione, cioè il “sapere tradizionale” (o sapere ecologico tradizionale, o sapere locale, come è stato variamente definito). Fino ad ora, e nel post precedente, per comodità di trattazione ho usato questo termine (d’ora in poi ST) come se non esistessero ambiguità rispetto alla sua definizione, alla sua estensione, alle sue origini.  Ma è utile soffermarci di più sulla sua articolazione all’interno della ricerca in etnobotanica, perché è essenziale per l’esplorazione del rapporto tra dati storico-etnobotanici ed efficacia biologica, ed inoltre perché è proprio sull’interpretazione del termine e sul sull’utilizzo da fare del “sapere tradizionale” che spesso casca l’asino della discussione erboristica/fitoterapica.

Partiamo intanto con una definizione preliminare tratta da un articolo di Victoria Reyes-García del 2010.  L’autrice definisce il ST o i sistemi di sapere tradizionale come: “il sapere sulle risorse e le dinamiche dell’ecosistema, e le pratiche di gestione ad esso associate esistenti tra i membri della comunità che, giornalmente e per lunghi periodi di tempo, interagiscono per il proprio benessere e per la coesistenza con l’ecosistema stesso”. Secondo l’autrice il ST include non solo informazioni sugli usi umani di piante ed animali, ma anche sistemi di classificazione, osservazioni sull’ambiente locale e un sistema di utilizzo e gestione delle risorse, oltre a credenze su esseri non umani, sovrannaturali, e sulle relazioni che essi intrattengono con la società. In definitiva il sapere tradizionale deve essere inteso come in modo di comprendere il mondo o la “cultura”.Esso rappresenterebbe un tratto culturale adattivo per le popolazioni che favorisce la loro sopravvivenza, la produzione di cibo, la costruzione di ripari e in genere il controllo sulle proprie vite. Verrebbe sviluppato e continuamente adattato ad un ambiente in continuo cambiamento, e verrebbe passato di generazione in generazione non isolato bensì strettamente intrecciato a valori culturali ed etici.

L’altro

Vista questa definizione, torniamo a bomba al problema dello status dei dati storici ed etnobotanici. Quello che a mio parere è uno dei problemi più diffusi in questo ambito è la tendenza a polarizzare i termini del dibattito seguendo una antica tendenza della discussione sull’altro o sull’alterità, cristallizzata dall’antropologia settecentesca intorno all’alternativa “buon selvaggio” (preservato dalla corruzione della civiltà grazie alle sue doti naturali) o “cattivo selvaggio” (immerso nella miseria e depravazione a causa della sua ignoranza e pigrizia).

Succede infatti spesso che l’altro erboristico (sia esso il medico antico che seguiva i dettami della sua tradizione di medicina colta, o sia esso il guaritore contemporaneo che in una società distante utilizza rimedi della foresta) venga costruito secondo una immagine idilliaca, con un discorso impressionistico e poco rigoroso. Si richiama, con modalità talvolta ingenua e nostalgica, un passato nel quale si potrebbero ritrovare le origini più vere, la vicinanza alla fonte, qualcosa di “originario” che il presente, il progresso e la modernità ci hanno tolto. Oppure si cerca nelle popolazioni esotiche e nelle loro culture “la silhouette mobile e vaga di un selvaggio che, più vicino di noi alla natura, avrebbe rifiutato in anticipo tutto ciò che ci opprime e del quale si troverebbe ancora traccia, ricordo o testimonianza nella foresta amazzonica o nel deserto australiano” (vedi ad esempio Marc Augè).

Termini che vengono spesso usati in questo contesto sono tradizione, radici, origine, memoria, ecc., ma raramente gli autori che li usano si fermano a pensare al perché essi vengano usati, ed in che modo. Questo ragionamento schematico e dicotomico, etnocentrico al rovescio, contribuisce ad imprigionare l’altro, a sottometterlo alla nostra rappresentazione. Spesso in questo dibattito si fa uso del termine e della metafora delle radici [2], che richiama il tema delle origini, che in quanto origini sembrano più importanti, imprescindibili, contenenti in nuce ciò che da esse si svolge [3]. Ma come dice Galimberti:

“Essere più vicini alla fonte non significa custodire qualcosa di “originario”, ma essere semplicemente all’inizio di un processo: la storia, che si compie facendosi, e non abolendola dissetandosi alla fonte. All’inizio c’è solo l’avvio, e non il senso nascosto, o il silenzio custodito da ciò che in seguito si dispiegherà. E solo il rifiuto del mondo che viviamo può far ritenere che il mondo antico, con il suo corredo di simboli, disponga di segni più veri. Ma rifiuto e nostalgia sono i moti dell’anima di chi disabita il mondo che per sorte si trova ad abitare, non sono certo criteri di giudizio, ne tantomeno sentieri di verità”.

Quantificazione

Fatta questa doverosa premessa circa l’atteggiamento metodologico da tenere quando siamo confrontati da dati storici ed etnobotanici, rimane l’aspetto tecnico, interno diciamo all’etnobotanica. Cosa significa il termine sapere tradizionale o i suoi cognati? E’ possibile quantificarlo? E se si, come?

La quantificazione del sapere tradizionale è stata tentata attraverso l’utilizzo di indici di misura dell’importanza culturale delle piante, i cosiddetti indici di Importanza Culturale Relativa [RCI]. Questi indici quantitativi si usano in etnobotanica per comparare usi e importanza culturale dei differenti taxa. Sono stati usati in vari studi e la loro utilità risiede in prima istanza nel fatto che su di essi si possono effettuare analisi statistiche di vario tipo per comparare diverse specie tra loro, zone vegetazionali, habitus, taxa, ecc. Essi inoltre permettono di ottenere valori numerici integrabili ad altri indici (tassonomici, fitochimici, ecc.) utilizzabili per comparazione trans-culturali e per testare differenti ipotesi.

Gli indici RCI si sono moltiplicati negli ultimi anni, ma mi soffermo in questo momento su tre gruppi di indici che sono particolarmente importanti.

1. Indici di totalizzazione degli usi

Semplici indici enumerativi, che elencano usi e non usi per ogni pianta.  Un esempio è UT

UT

Dove UT è pari alla semplice sommatoria di tutti gli usi conosciuti per ogni specie, che possono essere categorizzati per utilità, per taxon vegetale o per tipo vegetazionale. Questi metodi non tentano di misurare i livelli di importanza per i differenti usi e non tengono conto del consenso tra gli informatori. Il taxon più importante è semplicemente quello con le maggiori citazioni d’uso. Dal punto di vista della possibilità di catturare la complessità dell’oggetto sapere tradizionale (e della misura dell’importanza culturale) questi indici non offrono molto, e dal punto di vista della rilevanza statistica e della possibilità di testare delle ipotesi sono i meno efficaci. Non registrando la provenienza dell’informazione (da quale informatore) non permettono di valutare la variabilità intraculturale. Non tenendo in conto l’esistenza di livelli diversi di importanza, il metodo è eccessivamente sensibile all’intensità della campionatura (una pianta con molti utilizzi tutti poco importanti nel gruppo studiato peserebbe di più di una pianta con meno utilizzi ma molto più importanti). Per ovviare almeno in parte a questi deficit, sono stati sviluppati dei metodi più sofisticati, come quelli detti di assegnazione soggettiva dell’importanza.

2. Indici di assegnazione soggettiva

Indici simili a quelli precedenti, ma con modificatori di importanza basati sulle valutazioni e sulla conoscenza del contesto da parte del ricercatore. Questi indici pesati permettono la misura dei gradi di importanza ma introducono un pregiudizio del ricercatore che rende più difficile l’utilizzo degli indici, ad esempio nella analisi bibliografica. Un esempio è quello del Valore d’Uso (UVs)

UVs1

 

UVs deriva da UT ma somma i punteggi generati dal ricercatore per ogni utilizzo (importante = 1 punto; poco importante = 0,5 punti).

 

Gli indici che sono stati più influenti nei decenni recenti sono però senza dubbio stati gli indici di consenso.

 3. Indici di consenso tra gli informatori

Indici basati sul consenso tra gli informatori, con pesi dati agli usi generati dal ricercatore o dall’informatore. Questi indici si basano sulla teoria del consenso culturale (CCT), una teoria antropologica sviluppata per stimare la risposta culturalmente corretta in differenti domini del sapere tradizionale. La CCT parte dagli assunti che esista una risposta culturalmente corretta per ogni domanda [4], che il sapere consista nell’accordo tra informatori [5], e che la probabilità che un informatore risponda in maniera corretta ad una determinata domanda sia il risultato della sua competenza in quel dominio di sapere [6]. Si tratta quindi di un metodo che misura il sapere in termini di congruenza con un modello esplicativo proprio del gruppo studiato. Da ciò deriva l’ipotesi che maggiore la salienza di una pianta o di un suo utilizzo in una comunità, maggiore sarà la frequenza di citazione della pianta.

Qui sotto riporto alcune delle formule più usate.

1. Valore d’uso delle specie per un informatore:

UVis

Dove UVis = numero di usi menzionati per la specie s dall’informatore i; n is = numero di interviste nelle quali l’informatore i menziona un uso per la specie s.

2. Valore d’uso di una specie per tutti gli informatori

UVs2

Dove  ni = numero totale di informatori intervistati per la specie s. Questo indice misura il numero di usi attribuiti ad un taxon relativo al numero di informatori che citano il taxon, cioè misura l’importanza del taxon se per importanza intendiamo la sintesi degli usi. Alcuni autori hanno infatti riscontrato una correlazione positiva tra numero di informatori che considerano importante una specie s, l’indice UV, e il numero di utilizzi, ed hanno concluso che l’importanza è una sintesi della molteplicità degli usi di un taxon. Altri autori preferiscono legare l’importanza sia al numero di usi sia a quanto bene è conosciuta la pianta.

UVs può essere ritenuta rilevante quando tanti informatori citano molti utilizzi, ma può essere fuorviante se vi è un solo informatore che cita molti utilizzi, oppure se una pianta è oggettivamente molto importante, ad esempio una pianta simbolo stesso della società studiata, ma ha pochi usi. Teoricamente gli indici basati sul consenso degli informatori dovrebbero favorire quei taxon con un elevato livello di consenso in una cultura, ma un indice come UV è ancora molto crudo.

3. Metodo del punteggio dell’informatore

ISs

All’uso di una pianta viene assegnato dall’informatore un punteggio variabile da 0,5 (utilizzabile ma sub-ottimale) a 1,5 (quasi ottimale) in cinque categorie. Questi punteggi vengono sommati per ottenere un punteggio finale, per una singola intervista, nella forchetta 0-7,5. ISis si calcola come il punteggio medio per tutte le interviste, e ISs si ottiene come la media tra i valori d’uso per tutti gli informatori.

Criticità

Tutte queste tecniche condividono l’assunto che gli indici misurino il sapere tradizionale, e che l’estensione del sapere tradizionale su una pianta in una data cultura ci dia una misura indiretta dell’importanza culturale percepita di tale pianta in maniera più oggettiva degli altri indici. Inoltre, quando gli indici vengono utilizzati a scopo euristico, per delimitare taxa specifici per la ricerca etnofarmacologica, ci si basa sull’assunto che vi sia un legame tra importanza culturale, sapere tradizionale, efficacia percepita e potenziale farmacologico.

Ognuno di questi passaggi presenta delle criticità.

  1. Il rapporto tra indici RCI ed efficacia percepita potrebbe non essere lineare. Vi è ad esempio il ruolo della disponibilità delle piante che può confondere questo rapporto.
  2. Esistono molte discrepanze tra dati ottenuti con metodi differenti, discrepanze che rivelano come il sapere tradizionale comprenda molte dimensioni e campi differenti, rendendo difficile incapsularlo in un’unica definizione derivante da un unico metodo.
  3. Esistono discrepanze tra “sapere attivo” (quali piante vengono usate dalle persone) e “sapere passivo” (cosa le persone sanno sull’utilizzo delle piante)
  4. La correlazione tra sapere e consenso potrebbe non essere lineare e semplice, e potrebbe dipendere:

4.1. dal fatto che stiamo studiando piante medicinali o piante alimentari o piante medicinali e alimentari.

4.2. Da chi decidiamo di intervistare come informatore (guaritore, bambini, uomini, donne, ecc.). Gli etnofarmacologi si sono quasi sempre concentrati sui guaritori professionisti perché li ritenevano i più profondi conoscitori della materia, ma se professionisti e gente comune non condividono lo stesso corpus di sapere, allora restringere la ricerca ad un solo gruppo limita e rende pregiudiziale il tipo di informazione raccolta

4.3. Dalla differenza tra sapere condiviso e sapere idiosincratico

Casagrande mette anche in dubbio l’assunto che le piante usate più di frequente siano anche quelle percepite come più efficaci. L’autore arriva a questa conclusione dopo avere riscontrato nel suo studio sul campo che:

  1. L’abbondanza di una specie è collegata alla frequenza d’uso, mentre la frequenza d’uso non è collegata all’efficacia percepita; secondo l’autore questo indica che le prime piante ad essere utilizzate in caso di malattia sono le più disponibili, le più abbondanti nella vicinità delle zone abitate, a prescindere dalla loro efficacia. Le piante più efficaci (efficacia emica) vengono usate solo in caso le prime non risolvano il problema. Visto che la severità dei sintomi può scemare anche senza intervento, è probabile che in molti casi le piante più efficaci non verranno utilizzate.
  2. L’efficacia percepita e, in misura minore, la frequenza d’uso, sono correlati alla distribuzione del sapere, ma l’organizzazione sociale, i fattori cognitivi individuali e distribuiti, i processi di trasmissione culturale strutturata e random danno forma al processo di disseminazione. A parte poche piante e malattie molto comuni, la distribuzione del sapere sarà spesso random o non prevedibile.

 

Questi risultati mettono in crisi il postulato di molta ricerca quantitativa che suppone che frequenza d’uso, distribuzione del sapere e/o consenso tra informatori si correli bene con l’efficacia percepita, e mette quindi in dubbio la correlazione tra indici RCI ed efficacia emica. I risultati metterebbero anche in dubbio l’ipotesi che le piante più disponibili siano più utilizzate perché conterrebbero più composti interessanti (come voleva Moerman): le piante più disponibili verrebbero più usate semplicemente perché sono più disponibili.

Sarebbe quindi meglio misurare direttamente l’efficacia percepita, ma anche il legane tra efficacia percepita e potenziale farmacologico non è netta, perché le informazioni variano tra le popolazioni, è quindi necessario comparare diverse comunità in aree geografiche diverse e preferibilmente lontane.

Quindi, secondo Casagrande i rapporti tra frequenza d’uso e abbondanza di una pianta non sono indicatori forti dell’efficacia percepita, mentre il consenso lo è, e comunque l’efficacia percepita ha un legame debole con il poitenziale famacologico se non viene analizzata a livello transculturale (vedi il prossimo post).

diagramma

 

Questo non significa che, secondo Casagrande, le piante usate dalle popolazioni non siano mai efficaci, ma che gli schemi di distribuzione del sapere non rappresentano una corrispondenza ottimale tra bisogni indotti dalla malattia e i composti fitochimici disponibili nell’ambiente.

Il prossimo post si concentrerà su due articoli che descrivono due applicazioni molto diverse tra loro degli indici, ma che ci possono servire per capirne meglio l’utilità.

 

————————————————————————————————————————————————————————————————–

Note

[1] Casagrande, David 2004 Ethnobiology lives! Theory, Collaboration, and Possibilities for the Study of Folk Biologies. Reviews in Anthropology, vol. 33, pp. 351 to 370

[2] Una metafora molto potente perché mentre nessuno ha mai visto una tradizione o una identità, tutti hanno visto delle radici.

[3] Lo stesso concetto di tradizione viene presentato come monolitico e fisso. In effetti se non fosse presentato in questo modo non potrebbe svolgere il compito che gli viene richiesto, quello di “ancorare” le pratiche presenti ad un passato “naturale” che le giustifichi. Ma questa visione, di nuovo piuttosto ingenua, non rende conto del carattere costruttivo e dinamico della tradizione e della memoria collettiva che hanno bisogno di una serie di cornici di riferimento a carattere sociale che ne condizionano fortemente i contenuti. Al mutare dei quadri sociali muta la memoria. La memoria collettiva e la tradizione culturale si creano attraverso un processo di ricostruzione artificiale (vedi il Palio di Siena, la topografia leggendaria dei Vangeli in Terra Santa, la costruzione delle differenze etniche tra Hutu e Tutsi) (Halbwachs (1987) La memoria collettiva, Unicopli, Milano). Proprio gli antichi sembravano ben avvertiti del carattere dinamico e non monolitico della tradizione, incapace da sola a fondare una identità: Cicerone (De legibus, 2, 16, 40) racconta che un’ambasciata ateniese si recò a Delfi per chiedere ad Apollo quali riti sacri mantenere e quali no. L’oracolo rispose: eos quae essent in more maiorum, cioè “quelli conformi al costume degli antenati”, ovvero “tenetevi alla vostra tradizione”. Ma gli ateniesi tornarono poco dopo per ottenere maggiori delucidazioni sul significato dell’indicazione: infatti il costume degli antenati era mutato molte volte, quale era la tradizione che dovevano ritenere quella valida? Al che Apollo rispose: “la migliore”, rivelando che la tradizione non è ne fissa ne monolitica, cambia e si costruisce, e alla fine la scelta si basa su criteri utilitaristici, non sull’antichità.

[4] Nel senso che la realtà culturale, definita come la risposta data dalla maggior parte delle persone, è la stessa per tutti gli informatori (o le fonti di informazione, in caso si lavori su testi.

[5] Il livello di accordo tra informatori riflette il loro accordo congiunto

[6] Se consideriamo la competenza come la percentuale di riposte corrette.

 

 

Indicazioni tradizionali: come valutarle, e perché?

Ha senso interrogarsi sui dati tradizionali relativi all’uso delle piante medicinali, ai dati storici ed etnobotanici? Al di là di un mero interesse antiquario o accademico, che significato ha il sapere antico e tradizionale? Quale peso dobbiamo dare alle fonti tradizionali per le nostre decisioni rispetto all’oggetto piante medicinali?

Credo che proprio chi lavora con le piante medicinali, studiandole o usandole, dovrebbe porsi queste domande e tentare di dare loro risposte serie, credibili, aumentando la qualità della riflessione teorica senza usare scorciatoie.  Il fatto che le fonti storiche ed etnobotaniche siano abbondati è contemporaneamente un punto di forza ed un punto critico, perché può sembrare che la loro mera esistenza possa bastare a giustificare l’uso delle piante medicinali, la loro sicurezza, la loro efficacia, ecc.  Non è lo scopo di questo post approfondire le molteplici ragioni per cui questo assunto metodologico sia insostenibile.  Prenderò invece come assunto proprio il fatto che, appurata l’esistenza e la consistenza delle fonti, rimane da approfondire il problema della loro valutazione, della loro significatività, della loro interpretazione.

E allora, approfittando del traino di Erba Volant, tenterei di approfondire il ruolo dei metodi quantitativi in etnobotanica ed etnofarmacologia, e di mostrare come essi possano permettere una valutazione razionale dei dati, e di usare questi dati per intervenire nel mondo, per incidere sul reale, un argomento sul quale avevo discusso tempo fa con Andrea Pieroni.

Facciamo però un passo indietro per meglio definire i termini della questione. L’etnofarmacologia è stata definita come un campo di  studio interdisciplinare che si divide tra scienze mediche, naturali e sociali, e che ha a che vedere con l’osservazione, l’identificazione, la descrizione e la sperimentazione degli ingredienti e degli effetti delle droghe indigene.  Lo scopo di queste osservazioni è ampio, ed è cambiato nel tempo, come nel tempo sono cambiati gli scopi dell’etnobotanica, ma possiamo certamente dire che due possibili obiettivi sono la generazione di predizioni su piante non studiate, e la corroborazione dei dati sull’attività di piante poco studiate.  Il filtro etnobotanico è stato certamente il primo strumento che abbiamo utilizzato per individuare rimedi interessanti: l’osservazione del comportamento dell’uomo, e in qualche caso degli animali, ha portato alla scoperta delle piante che hanno fatto la storia della farmacologia classica, le piante cosiddette eroiche (Strophantus, Datura, Atropa, Ephedra, Physostigma venenosum, Papaver somniferum, ecc.).

Ma le piante eroiche, facilmente identificabili a causa dei loro effetti drastici, costituiscono una percentuale molto ridotta delle piante medicinali, ed identificare piante ad azione meno evidente si è fatto sempre più difficile. Il migliorare della tecnologia sembrava per un certo tempo avere scalzato il metodo della bioprospezione etnobotanica: i metodi di screening high throughput permettevano di testare migliaia di estratti in poco tempo, e la chimica combinatoria permetteva di creare decine di strutture da un unico modello naturale, e la tecnica di raccolta delle piante a random diveniva in questo modo competitiva prché permetteva la raccolta di moltissimi campioni in poco tempo e senza dover coinvolge le popolazioni locali.  Questo non ha impedito che, sotto la spinta di molti etnofarmacologi, negli anni ’80 e ’90 del secolo scorso l’uso del dato etnobotanico sia ritornato in auge.  Questo nonostante che lo screening etnobotanico soffra di alcuni problemi legati ad una sua non economicità (necessita infatti di operatori professionali, di molto tempo e sostegno economico), e a volte alla poca applicabilità dei dati ottenuti localmente a problematiche di salute tipiche dei paesi sviluppati.

Il problema metodologico che si presentava ai ricercatori era però importante: l’etnofarmacologia moderna doveva contemporaneamente evitare di ridursi ad una serie di rassegne meramente elencatorie senza consistenza teorica, slegate le une dalle altre, ed evitare approcci ingenui. C’era cioè la sentita necessità di produrre lavori veramente transdiciplinari, di dotarsi di strumenti analitici migliori, di metodi quantitativi in grado di generare ipotesi falsificabili, riproducibili e trattabili con strumenti statistici; solo in questo modo la disciplina poteva essere in grado di intervenire nel mondo, magari proprio in quelle comunità locali che erano state fino a quel momento solo una fonte informativa.

Un articolo determinante da questo punto di vista è certamente stato quello di Browner, De Montellano e Rubel del 1988, nel quale gli autori proponevano una piattaforma metodologica che comparasse la prospettiva “emica” (cioè determinata dagli elementi interni di una cultura e dal loro funzionamento piuttosto che da schemi esterni) dell’etnomedicina e quella “etica” (di tipo generale, non strutturale, oggettiva) delle bioscienze, per generare nuove interpretazioni dei dati provenienti dalla ricerca transculturale in antropologia medica.

Gli autori identificano come un obiettivo dell’antropologia medica quello di contribuire alla “riduzione del carico mondiale di malattie, disabilità e sofferenze” , oltre ad una nuova comprensione del significato di salute e malattia. Puntualmente essi riconoscono anche che questa proposta potrebbe sembrare a molti ricercatori qualitativi di matrice eccessivamente riduzionistica, incapace di catturare i fenomeni nel loro contesto, ma ribadiscono la loro convinzione che invece sia possibile effettuare analisi etnograficamente valide, capaci di produrre dati che siano allo stesso tempo rilevanti e significativi per gli informatori, e suscettibili di comparazione e valutazione oggettiva.

Gli autori propongono uno schema di lavoro che consiste:

A) nell’identificare i fenomeni da analizzate in termini “emici” (mal di testa, indigestione, ecc.) e le piante usate per trattarli

B) nel determinare in quale misura i fenomeni descritti possano essere compresi nei termini dei metodi e dei concetti biomedici

C) nell’identificare aree di convergenza e divergenza tra i fenomeni descritti e le spiegazioni biomediche.

Una volta effettuati i vari passaggi, sarebbe teoricamente possibile assegnare ad ogni pianta un livello di evidenza, che gli autori così definiscono:

L1: rapporti di utilizzo parallelo in popolazioni tra le quali la diffusione è improbabile.
L2: evidenza L1 supportata da analisi fitochimica che verifichi la presenza di composti chimici che possono produrre un effetto terapeutico, o che risultano positivi in saggi biologici legati all’attività terapeutica.
L3: evidenza L2 supportata da una modalità di azione plausibile che produrrebbe un effetto terapeutico in un paziente.
L4: evidenza L3 supportata da studi clinici

L’approccio di Browning e collaboratori è stato fondamentale ed ha influenzato moltissimi ricercatori nel cosiddetto paradigma biocomportamentale. Uno dei problemi riscontrati è però che, a parte il primo livello di evidenza (L1), tutti gli altri si basano su dati di tipo fitochimico, farmacologico o clinico. Ma come analizzare le moltissime piante per le quali questi dati non fossero disponibili, o lo fossero in minima parte?

Negli anni vari autori si sono cimentati nel tentativo di espandere il programma di Browner e colleghi, partendo da alcuni assunti, che riassumo in questo modo: 1. le piante importanti come medicinali secondo il sapere tradizionale di un popolo non sono campionature random delle Flore totali, 2. le piante producono una ampia gamma di sostanze interessanti per la salute umana, 3. la sperimentazione e la scelta di certe piante da parte dei gruppi umani viene aiutata da caratteristiche organolettiche delle piante legate al contenuto fitochimico, 4. esiste una correlazione tra filogenesi e fitochimica, 5. popolazioni culturalmente e geograficamente distanti hanno meno probabilità di aver condiviso sapere etnobotanico.

Come vedremo, ognuno di questi punti, se esaminato nel dettaglio, presenta delle criticità.

Iniziamo ad esempio dall’assunto della distribuzione non random delle piante medicinali e del significato di questa distribuzione.  Come si quantifica la segregazione delle piante medicinali nei taxa di una Flora specifica, e come si compara tra Flore differenti?  Inoltre, secondo quali criteri vengono selezionate le piante medicinali da parte delle popolazioni umane? E infine, parlando di sapere tradizionale, come si identifica, e come lo si compara tra culture diverse?

Uno degli studi che hanno iniziato ad analizzare il problema della segregazione tassonomica delle piante è certamente quello di Moerman e collaboratori (1999), che hanno effettuato una analisi di 5 Flore distanti fra loro, domandandosi se vi fossero famiglie botaniche dove il numero di piante medicinali fosse superiore a quello che ci si poteva aspettare da una scelta casuale.  Nello studio gli autori hanno usato il metodo della regressione lineare per identificare i valori più probabili data una distribuzione casuale, ed hanno analizzato i valori che differivano dal valore aspettato (i residui). Ad un residuo positivo elevato corrispondeva una famiglia botanica con una maggior concentrazione di piante medicinali.  Raccolti i dati sui residui per le cinque flore, gli autori le hanno poi comparate a coppie usando l’indice di correlazione di Pearson ed hanno identificato tre famiglie sovrapponibili dominanti in quattro flore su cinque: Asteraceae, Apiaceae e Lamiaceae (da notare che le quattro flore congruenti appartengono tutte all’ecozona Olartica, e l’unica non congruente alla regione Neotropicale).

Sull’onda di questa prima pubblicazione, vari autori hanno applicato la regressione lineare all’analisi comparativa di varie Flore, nel tentativo di duplicare e completare il lavoro di Moerman.

Allo stesso tempo sono state avanzate delle critiche e proposti dei miglioramenti alle tecniche statistiche.  La regressione lineare ad esempio soffre di alcune debolezze: non è adatta a generare ipotesi confutabili, tende a favorire i taxa più numerosi, perché pone un limite massimo ai residui: una famiglia con 10 specie non potrà mai avere uno scarto >10, mentre una famiglia con 100 specie potrebbe avere uno scarto di 100.  Inoltre la regressione lineare presuppone che il rapporto tra  numero di specie medicinali e numero di specie totali (SM/ST) sia lineare, ma questo presupposto non è necessariamente giustificato.  Per finire, la suddivisione in taxa usata da Moerman e colleghi permette una comparazione discreta (la spp. x appartiene/non appartiene alla famiglia y) e non continua tra le specie, e in questo modo non riflette bene la prossimità filogenetica, oltre ad essere legata alla parziale convenzionalità della classificazione tassonomica, in modo che la stessa analisi darebbe risultati differenti a seconda di un approccio tassonomico da lumpers o da splitters.

Bennett e Husby nel 2008 hanno testato la resi di Moerman nella Flora equadoriana usando il metodo binomiale, metodo che a loro parere avrebbe permesso di generare dati utili per testare ipotesi, anche se considera comunque il rapporto SM/ST come lineare.  Più di recente Weckerle e colleghi nel 2011 hanno studiato la Flora medicinale campana comparando i metodi della regressione lineare e quello binomiale ad un approccio Bayesiano, che considera il rapporto SM/ST come una variabile random, e tutte i taxa sopraspecifici come pari, prescindendo dalle suddivisioni tassonomiche, evitando quindi il problema del favorire taxa più numerosi.

Altro problema, discusso da Bletter e in altri articoli, come quello ben descritto da Meristemi, è quello dell’origine dei dati tassonomici: solo un lavoro di analisi filogenetica specifico e quindi lungo e costoso, permetterebbe una comparazione basata su un rapporto continuo di vicinanza filogenetica.
Nonostante le grandi difficoltà, mi pare assodato che i dati in letteratura indicano che il clustering tassonomico esiste, e si può quantificare. Per quanto questo dato sia importante ed intrigante, ci rimane da porci una domanda ancora più rilevante per le possibili implicazioni pratiche: quali sono le ragioni per cui i gruppi umani tendono ad usare più di frequente certe specie piuttosto che altre?  La risposta non è scontata, se alcuni autori hanno risposto che i raggruppamenti rispondono solo a criteri di tipo simbolico, mentre altri propongono approcci più o meno radicalmente adattazionisti.

Secondo Moerman la segregazione in gruppi è dovuta per lo meno a due ordini di ragioni legati tra loro: il primo ha a che vedere con la   correlazione tra filogenesi e fitochimica, per cui gli esseri umani riconoscerebbero, grazie alle loro proprietà organolettiche, piante contenenti gruppi chimici specifici (in particolare composti amari, aromatici e piccanti), e quindi, grazie al fatto che i percorsi metabolici si conservano nelle linee evolutive vicine, tenderebbero a riconoscere specie appartenenti a taxa correlati.  Il secondo ordine ha a che vedere con la trasmissione del sapere etnobotanico. La proposta di Moerman è che le flore medicinali analizzate si assomigliano perché i gruppi umani, nelle loro trasmigrazioni nel corso della storia dal paleolitico in poi, hanno portato con se un sapere tradizionale che hanno trasmesso alle generazioni successive, tramandando di fatto l’utilizzo di certe specie o taxa piuttosto che altri. Leonti e colleghi hanno poi parlato di trasmissione non di un sapere definito e specifico ma della trasmissione di un set di criteri di scelta di vario tipo: organolettici, morfologici, ecologici, simbolici.

Questo set di criteri avrebbe permesso l’adattamento del sapere tradizionale all’esplorazione di nuove regioni biogeografiche dove le specie medicinali o addirittura le famiglie più usate in precedenza non fossero presenti o importanti.  Alla base del clustering tassonomico esisterebbe quindi il legame tra le capacità percettive dell’uomo, la fitochimica delle piante, il parallelismo tra filogenesi e fitochimica, oltre a vari fattori culturali e sistemi cognitivi. Le Asteraceae verrebbero scelte perché conterrebbero principi attivi amari facilmente riconoscibili al gusto.  Tutto questo non ci porta ancora alla conclusione che la selezione sia significativa dal punto di vista dell’attività biologica delle piante.  Non va poi dimenticato che altri autori ritengono questo paradigma troppo ambizino, e ritengono che le ragioni per le quali le piante vengono preferite potrebbero essere di altro ordine, ad esempio la loro disponibilità nelle vicinanze delle abitazioni. In questo senso le Asteraceae verrebbero scelte perché si adattano bene a condizioni di crescita in ambiente ruderale e sono quindi facilmente disponibili all’uso.

Nella prossima puntata vorrei concentrarmi sul problema della definizione e quantificabilità del concetto di sapere tradizionale.

Uomo e piante 8/dimoltialtri

Dopo un lungo periodo piuttosto congestionato che mi ha impedito di buttare giù alcunchè per il blog, provo a rintrecciare le fila del discorso sul rapporto uomo e piante. L’ultima e lontana puntata la potete ritrovare qui,  e da questa puntata potete rintracciare le altre sei già disseminate.  Mi ero fermato ad un punto cruciale, avendo tentato di dare una visione d’insieme della teoria chemioecologica dell’origine dell’uso delle piante (debitore per questo interesse ai testi di Johns e della Etkin), e essendomi lasciato da affrontare il capitolo più specifico sulla medicina “botanica” vera e propria.  Riprendo da qui, in parte riassumento quanto già detto ed in parte tentando di capire se questi ragionamenti possano illuminare la storia della medicina antica, e come.

Introduzione

Il filo che lega i primi post di questa serie alla seconda, che lega cioè i fenomeni chemioecologici adattivi tra uomo e piante allo sviluppo della medicina, è certamente sottile.  Indubbiamente l’ipotesi coevolutiva, con tutti i suoi limiti, fornisce una chiave interpretativa fertile – una buona euristica – per iniziare a rispondere alla domanda dalla quale siamo partiti: “come si giustifica la predominanza delle piante nelle farmacopee umane?”.  Essa propone che i rapporti tra uomini e piante si sono inizialmente sviluppati seguendo percorsi biologici di adattamento, simili a quelli che caratterizzano i rapporti tra piante ed altri animali, o tra piante e piante.[1]

D’altro canto, se volessimo estendere questo ragionamento all’intreccio sempre più complesso di pratiche, saperi, mediazioni simboliche ed istituzioni che caratterizzano la medicina come pratica culturale elaborata,[2] ci troveremmo di fronte ad ostacoli evidenti.  L’ipotesi coevolutiva, infatti, può “spiegare” solo in maniera limitata il sapere dell’uomo sulle piante medicinali; ci suggerisce la presenza di un legame “intrinseco” o “biologico”, ma questo legame non riesce, da solo, a dar ragione delle molteplici attività ed indicazioni terapeutiche attribuite, nel corso della storia, ai rimedi vegetali; è anzi probabile che possa giustificare direttamente solo gli utilizzi delle piante per parassitosi ed infezioni intestinali, più strettamente legati alla teoria dei tre livelli trofici.[3]

E’ invece ipotizzabile che l’interiorizzazione dei rapporti con le tossine vegetali [4] abbia costituito, per i primi gruppi umani, solo una base  sulla quale aggregare successive ulteriori  acquisizioni culturali di sapere farmacologico, aprendo la strada verso un utilizzo vieppiù complesso della chimica vegetale
Seguendo questa linea di ragionamento, si può tracciare una ideale (ed idealizzata) successione di momenti evolutivi[5].

Breve storia dei nostri primi rapporti con le piante

Le prime sperimentazioni

I primi rapporti complessi tra esseri umani e piante potrebbero avere avuto luogo come semplice interazione senza mediazioni culturali e senza riflessioni consapevoli da parte degli individui.  Un esempio potrebbe essere l’associazione mnemonica che avviene quando al consumo di una pianta succede un cambiamento immediatamente percepibile nello stato dell’organismo. Questa sorta di apprendimento automatico potrebbe avere avuto luogo solo per piante con effetti molto marcati e subitanei, come nel caso di piante velenose e/o farmacologicamente molto attive. Queste sono in effetti le protagoniste della farmacologia classica, le piante anestetiche, analgesiche, psicoattive, stimolanti, e ancora le piante cardiotoniche e diuretiche; ma anche piante con evidenti ed immediati effetti sul tratto gastrointestinale, un apparato sul quale le sostanze ingerite hanno un effetto spesso immediato e precedente all’assorbimento nella circolazione sistemica, sia per la sua caratteristica di essere un diaframma con il mondo esterno, sia per I meccanismi fortemente reattivi ad esso associati, posti a difesa della salute dell’organismo)[6].

Nei piccoli gruppi egalitari di cacciatori e raccoglitori del paleolitico,[7] precedenti alla rivoluzione agricola, e di solito costituiti da individui ben nutriti e in salute, le minacce per la salute derivavano principalmente da infezioni a lunga latenza, malattie croniche infettive della pelle e problemi parassitari, ferite e traumi derivati da incidenti familiari, di caccia e di guerra, mentre è improbabile che le infezioni acute e virulente, le diarree infettive, le epidemie, ecc., giocassero un ruolo rilevante, viste le ridotte dimensioni dei gruppi.[8] Infanticidio ed abbandono degli anziani erano probabili metodi di controllo della salute e della stabilità del gruppo.

Secondo molti storici  é probabile che l’origine delle malattie fosse sempre immaginata come esterna al corpo e con effetti non limitati all’individuo malato ma riverberati su tutto il gruppo di appartenenza. Inoltre, vista la ridotta complessità formale di queste società e la poca o assente stratificazione e specializzazione di ruoli, le attività di cura erano quasi esclusivamente intraprese all’interno della famiglia o della medicina popolare collettiva, non gestite da esperti con conoscenze esoteriche, e le terapie erano solitamente empiriche e magiche (piante ed incantesimi) o comportamentali (digiuno, reclusione, riposo).

Rapporti causa-effetto

É stato proposto che in questo contesto sociale le osservazioni empiriche e le associazioni consapevoli di tipo causa-effetto avrebbero iniziato a sovrapposi e ad arricchire il sostrato sopra descritto di risposte automatiche e di comportamenti appresi attraverso l’uso non mediato delle piante.  Questo utilizzo più consapevole delle piante è ad esempio evidente nel modo più sofisticato con il quale gli esseri umani, rispetto ad altri animali, usano le piante antelmintiche ed amebicide: eseguono infatti l’esame delle feci prima e dopo l’utilizzo per riconoscere e verificare  l’attivitá delle piante.  Uno strumento cognitivo di questo tipo potrebbe spiegare, ci dice Johns, l’utilizzo delle piante per il trattamento delle malattie più semplici (pensate e trattate in maniera naturalistica) come fratture, slogature, e soprattutto ferite ed infezioni della pelle, nel qual caso l’utilizzo di piante astringenti e antisettiche é aperto ad una verifica fattuale semplice e diretta [magari usare degli esempi]. Altri casi nei quali questa spiegazione potrebbe funzionare comprendono i disturbi della funzione sessuale, o ancora febbre, raffreddore, tosse, diarrea, mal di testa, ecc.

Malattie molto più complesse ed episodi più drammatici, che ponevano a rischio la stabilità e coesione del gruppo, erano invece al di là delle possibilità di comprensione naturalistica, per la mancanza di concetti di fisiologia e patologia, di statistica, di microbiologia. Le risposte offerte erano spesso di tipo soprannaturale, magico-religioso. D’altro canto, seppure non in grado di comprendere I meccanismi eziopatologici, gli individui potevano riconoscere gli schemi secondo I quali si organizzavano I sintomi, le ricorrenze, e le risposte dei quadri sintomatologici ai rimedi, quindi una dimensione empirica era pur sempre possibile, e poteva guidare, almeno in linea di principio,le scelte terapeutiche.  Naturalmente poteva anche succedere che le attività di certe piante, empiricamente osservabili, venissero sfruttate all’interno di un quadro esplicativo di tipo naturalistico, ma non perché agissero sulle cause della malattia o sui sintomi, ma perché rispondevano alle aspettative degli individui. Johns porta l’esempio dell’uso da parte degli Zuni di un trattamento emetico per trattare le gastralgie in genere; l’opinione di Johns è che questo utilizzo derivi dall’esperienza comune raccolta nei secoli sui disturbi di stomaco causati da intossicazioni alimentari. In questi casi, ma solo in questi, l’uso dell’emetico ha senso perché elimina le sostanze tossiche e quindi il disagio di stomaco. In caso di gastralgie derivate da altri problemi il trattamento non ha senso, ma potrebbe avere un certo effetto psicosomatico per il fatto di rispondere alle aspettative.

É comunque un fatto che in queste società il guaritore agiva sia nel campo naturalistico sia nel campo spirituale, in maniera sacra ed olistica, trattando sia l’individuo sia il gruppo. In un setting soprannaturale avrebbe agito come sciamano,[9] chiaroveggente, incantatore, divinatore e/o prete; in un setting naturalistico come specialista empirico: esperto di piante, specialista in ossa e legamenti, ostetrica, specialista in denti.

Tentativi di spiegazione più complessi

Il salto di qualità vero e proprio, che necessita di un livello di spiegazione diverso, arriva però con la nascita dei primi agglomerati urbani della rivoluzione neolitica, e con la conseguente crescente complessità delle società.  Il neolitico portò agricoltura ed allevamento, maggior sedentarietà ed aumento del cibo disponibile, e un surplus che si rese disponibile per lo scambio commerciale.  In risposta a questi cambiamenti la società si stratificò e divenne più gerarchizzata, alcuni gruppi di individui concentrarono nelle proprie mani più potere, più ricchezza e maggior capacità decisionale. Alcuni di questi si specializzarono in medicina e religione, dando inizio ad un primo contrasto tra sapere medico popolare e pubblico e sapere medico colto, arcano ed esoterico. La stratificazione favori un maggior pluralismo di forme di cura ed un maggior scetticismo rispetto alle terapie.

Contemporaneamente la popolazione umana aumentò e gli sviluppi dovuti ad allevamento, urbanizzazione e commercio elevarono il carico di malattie e favorirono le epidemie. L’agricoltura migliora infatti la quantità di calorie disponibili ma spesso, riducendo il ventaglio di nutrienti disponibili, porta ad elevata suscettibilità agli agenti patogeni.  Lo sviluppo dell’irrigazione facilitò con tutta probabilità la trasmissione dei patogeni per via orofecale, con aumento della mortalità infantile, mentre la creazione delle grandi vie commerciali favorì il trasporto di agenti patogeni a grandi distanze.[10] L’urbanizzazione più spinta portò ad un carico parassitario ed infettivo e a nuove malattie da contaminazione come tifo, malaria, ecc., mentre malattie ancora più esiziali (le esantematiche, il vaiolo, il colera, la sifilide) sarebbero arrivate solo più tardi.

Questi cambiamenti nella struttura della società e nella prevalenza delle malattie ebbe sicuramente effetti anche per la medicina. E’ probabile che le nuove malattie scardinarono e screditarono vecchi modi di gestire la salute e  vecchi rimedi, aprendo la strada a nuove concettualizzazioni, più sofisticate ed elaborate. Il maggior carico di malattie (più prevalenti, più diverse e più pervasive) creò inoltre la necessità di possedere un lessico specifico maggiore [11],mentre nuove necessità legate a problemi di fertilità spinsero alla ricerca di nuovi rimedi prima non necessari, ad azione contraccettiva, parturiente, galattagoga, emmenangoga ed abortiva.[12] L’aumento del carico di lavoro spinse probabilmente alla ricerca/offerta di tonici (fisici, psicologici, sessuali, della sorte). L’aumento di traumi e ferite causati dal lavoro agricolo e di allevamento, oltre che dalle attività di commercio e dalla guerra fece crescere le conoscenze in campo di cura delle ferite e riduzione dei traumi articolari.

Se per certe malattie, semplici e lineari nel loro decorso, è facile immaginare che l’uomo sia riuscito a scoprire dei rimedi vegetali secondo le modalità sopradescritte, ci sono patologie per le quali è improbabile se non impossibile che questo sia accaduto. Patologie complesse, dal lungo decorso rendono difficile associare un rimedio ad una riduzione dei sintomi, oppure semplicemente non rispondono ad alcun rimedio semplice. Gli esempi più classici sono le malattie cronico-degenerative, le malattie metaboliche, le neoplasie, l’invecchiamento e le patologie ad esso legate.

La fondamentale inevitabilità dei processi di senescenza e la morbidità e mortalità che questi comportano, in società dove ancora I soggetti incapaci di contribuire attivamente allo sforzo comune di sopravvivenza erano a rischio di perdita di status e ruolo sociale, contribuirono all’emergere di forti istanze esistenziali che stimolarono nuove riflessioni sui significati da dare alla morte, alla vecchiaia, a sofferenza e dolore, e alla ricerca di rimedi per lenire tali sofferenze ed angosce.

In gruppi umani più numerosi, nelle prime civiltà urbane con evidenti stratificazioni e gerarchie sociali, queste istanze  si legarono e vennero comprese all’interno di un più ampio contesto culturale, religioso e magico, che articolava il rapporto tra individuo, salute e malattia, e le strategie messe in atto per modificare questo rapporto.

In definitiva le istanze esistenziali si inserirono, ed in parte contribuirono a formare, un nascente sistema teorico e simbolico medico, adatto a capire e ad agire nel mondo, ed anche a motivare la ricerca di soluzioni terapeutiche [13], soluzioni che rivelano quindi inevitabilmente un inestricabile commistione della dimensione empirica, simbolica, rituale e magica. Questa commissione si rivela nel significato profondo assegnato alla Dottrina delle Segnature, alle caratteristiche organolettiche, morfologiche ed ecologiche delle piante medicinali.

Esempi di relazione tra sapere empirico e simbolico sono ad esempio le terapie usate nella medicina tradizionale in risposta all’”intrusione” di sostanze pericolose, spiriti maligni o “inquinamento sociale”  Queste terapie sono spesso di tipo naturalistico, indirizzate al tratto gastrointestinale e consistenti in digiuno, uso di rimedi emetici e lassativi (“eliminativi”), o amari.  Anche le piante dal sapore o dall’odore particolarmente forti (salienti dal punto di vista percettivo), sono state ritenute utili perché in grado di eliminare gli spiriti maligni responsabili della malattia; ne è testimonianza la grande importanza che ha l’utilizzo dei sensi chimici per la scelta dei rimedi in molte delle tradizioni colte, come nella medicina tradizionale cinese, nella medicina galenica,[14] nella tradizione medica indiana (Ayurveda, Unani-Tibb) e tibetana, ecc.  Qualche autore ha suggerito che il ruolo centrale che il tratto gastrointestinale ricopre nella maggior parte dei sistemi medici tradizionali[15] dia supporto alla teoria che il trattamento di parassitosi, infezioni o altri problemi gastrointestinali siano un tratto fondamentale associato alla nascita della medicina, e che si sia inestricabilmente associato ad istanze simboliche, che avrebbero “rivestito” un nocciolo empirico preesistente.

Voler vedere in una ricetta di medicina popolare, che associa l’uso di una pianta ad un rituale, esclusivamente il lato razionale, considerando spurio o comunque non rilevante il momento rituale o, d’altro canto, considerare rilevante solo questo ultimo aspetto eliminando a priori la possibilità che la pianta abbia una qualche azione, sono errori dovuti alla forzata ricerca di universali che tralascia i dettagli, che dissocia empirico e simbolico a priori.

Uso  delle piante nelle società tradizionali contemporanee: un utile parallelo

Di come si sia sviluppato l’uso delle piante medicinali nelle prime civiltà umane ci sarà tempo di parlare nei prossimi capitoli. Piuttosto, dopo questa analisi teorica rimaniamo disarmati di fronte ad un problema cruciale: la mancanza di dati oggettivi (scritti o iconografici) che possano confermare l’ipotesi fin qui descritta sulla preistoria della medicina delle piante. Questo fatto ci costringe ad usare dei parallelismi con l’utilizzo delle piante nelle società tradizionali del recente passato e contemporanee, nella speranza (e nella convinzione) che le forme di organizzazione della vita, gli usi e costumi e le pratiche mediche siano abbastanza simili a quelle delle prime comunità umane da darci un indizio su come siano andate le cose allora.

I dati etnografici indicano che le popolazioni con stile di vita ancora in transizione tra caccia-raccolta ed agricoltura, o nei primi stadi dell’agricoltura incipiente, usano solo una porzione limitata delle risorse vegetali a loro disposizione come medicine[16]. Le piante utilizzate a scopo medicinale si dispongono secondo uno schema non casuale e abbastanza stabile, sia se osservato all’interno di una cultura[17], sia se comparato tra culture geograficamente molto distanti[18, 19].  Tale somiglianza si può spiegare (secondo gli autori [19]) ipotizzando una convergenza tra filogenesi e fitochimica, tale per cui gli esseri umani scelgono piante appartenenti a gruppi tassonomici vicini perché portatori di corredi fitochimici simili e quindi probabilmente attivi sullo stesso tipo di patologie, oltre a fattori culturali e di trasmissione del sapere. I gruppi umani originali, nelle loro migrazioni per la conquista di nuovi territori, avrebbero portato con sé il proprio bagaglio di sapere medicinale, e lo avrebbero trasmesso alle nuove generazioni nei nuovi territori. Questo sapere “migrante” non consisterebbe semplicemente in una collezione di dati empirici,  ma dovrebbe essere inteso come un set dinamico di criteri di selezione delle piante, che comprende categorie morfologiche, organolettiche, ecologiche, simboliche e culturali in senso più ampio[20].

Secondo questa ipotesi la sperimentazione, la scoperta e l’acquisizione di nuovo sapere sulle piante (ad esempio la scelta di una nuova pianta per trattare un disturbo) e la percezione dell’efficacia delle piante stesse, si sarebbe costruita nei gruppi umani attraverso processi di analogia con le piante già conosciute, analogie basate sulla salienza percettiva delle piante, cioè sul sapore e sull’odore, sulle caratteristiche morfologiche,  oltre che su forme più astratte, simboliche e sociali, di categorizzazione (come ad esempio l’umoralismo, o la dottrina delle segnature).

E’ indubbio che il sapore delle piante giochi un ruolo apparentemente molto importante nella loro selezione e nella scelta della categoria nella quale farle ricadere. In uno studio su alcune popolazioni messicane tutte le piante medicinali culturalmente importanti risultarono essere aromatiche, e tutte le piante fortemente medicinali o salutari erano anche amare [21];  di converso, in altri studi, le piante esplicitamente non medicinali sono più spesso senza odore o sapore rispetto alle piante medicinali[22]. Nelle parole di un ricercatore: “le piante medicinali che sono più importanti per la comunità hanno aromi e sapori che sono rilevanti nella determinazione del loro utilizzo[23, 24] . Secondo alcuni questa rilevanza del gusto rifletterebbe un dato biologico basilare del rapporto chemioecologico piante-uomo: i sensi chimici sarebbero il ponte che unisce il nostro passato di primati foliovori al nostro presente di utilizzatori di piante medicinali, nel senso che ci permetterebbe di selezionare piante particolarmente ricche in composti attivi; e il raggrupparsi delle piante medicinali in pochi taxa sarebbe un semplice riflesso dell’abbondanza dei composti amari (o piccanti, o aromatici) in queste famiglie[25].

I processi adattivi richiamati all’inizio del capitolo riuscirebbero, secondo questa ipotesi, a costituire il sapere medicinale attraverso processi cognitivi universali[26] di esplorazione e scoperta guidati dalla percezione di gruppi fitochimici specifici; il gusto sarebbe un criterio chiave di classificazione, e la classificazione popolare delle piante non sarebbe arbitraria, bensì determinata almeno in parte dalla realtà biologica.

Questo modello di indagine e scoperta viene però criticato da chi [27] obietta che presumere l’esistenza di ruoli universali delle percezioni organolettiche nella selezione delle piante medicinali è prematuro. Secondo questi autori è difficile immaginare che una indagine empirica sul campo (un soggetto alla ricerca di piante) parta direttamente dai sapori[28], mentre è più realistico immaginare che le persone inizino ad esplorare le piante guardandosi intorno, osservando per prime le caratteristiche morfologiche; famiglie come le Asteraceae o le Lamiaceae potrebbero essere state favorite non per il contenuto fitochimico, bensì per la presenza di fiori ed infiorescenze peculiari e cospicue. Casagrande,[29] in un suo lavoro sul campo, ha riscontrato inoltre che il sapore non era, da solo, un fattore predittivo sufficiente né dell’importanza medicinale (percepita, emica) di una pianta, né del tipo di utilizzo della pianta stessa, e che quindi il sapore non sembrava giocare un ruolo importante nella trasmissione del sapere. Questa posizione si accorda bene con il modello bioculturale delle percezioni di Shepard[30], secondo il quale  le sensazioni devono essere intese come fenomeni bioculturali radicati nella fisiologia umana, ma anche costruiti attraverso le esperienze personali e la cultura. Intese in questo modo le percezioni organolettiche possono cambiare nel tempo e passando da una cultura all’altra, e con esse il legame tra sapore e uso medicinale delle piante.   Sempre secondo Casagrande é possibile che la prevalenza delle piante amare tra quelle medicinali rifletta semplicemente una sovrabbondanza di composti amari in natura[31], e la bassa specificità dei recettori per l’amaro non permetterebbe loro di riconoscere specifiche caratteristiche delle molecole, chimiche o farmacologiche [32].

Secondo questa posizione I sapori avrebbero giocato più un ruolo mnemonico che chemioecologico, e la combinazione di attributi delle piante con esperienza della malattia potrebbe spiegare l’esistenza di gruppi prototipici di piante usati per trattare gruppi specifici di malattie[33].

Questo non significherebbe, secondo Casagrande, che le piante usate dalle popolazioni nel passato e nel presente non siano efficaci, bensì che gli schemi di distribuzione del sapere non rappresentano un corrispondenza ottimale tra i bisogni basati sulle malattie e tutti i composti fitochimici disponibili[34], una conclusione raggiunta anche da Johnson in uno studio sui nativi nordamericani[35].

La correlazione storica tra certe piante e certi disturbi (ad esempio tra piante con forte salienza organolettica e disturbi del tratto gastrointestinale, una correlazione presente in tutte le culture e periodi storici) sarebbe quindi conseguente ad una categorizzazione mnemonica post-hoc (simile alla Dottrina delle Segnature[36]) ed anche ad un legame biologico euristico (perché I composti organolettici potrebbero essere indicatori di attività biologica).

——————————————————————————————

Note
[1] Inoltre contribuisce a guardare alla storia da una prospettiva eccentrica, da una visuale aliena, che non metta sempre al centro della storia umana l’uomo, ma ne riconosca le determinanti ambientali e contingenti. Come dice Hobhouse, (Hobhouse, Henry (2005) Seeds of Change. Counterpoint, Berkeley, USA, p.xiv) le piante sono una fonte inaspettata di cambiamento nella storia, spesso oscurata perché gli uomini erano troppo concentrati a guardare ai propri simili per accorgersene.
[2] Secondo Kleinmann (Kleinman, Arthur (1993) “What is specific to Western medicine?” In W.F. Bynum e Roy Porter (eds.) Companion Encyclopedia of the History of Medicine, Vol. 1 Routledge, London, UK, p.15) la medicina (intesa in senso lato, antropologico) può essere descritta come una struttura coerente di credenze sulla salute e l’istituzionalizzazione di pratiche terapeutiche. Le caratteristiche comuni a tutte le tradizioni sarebbero: la presenza di categorie attraverso le quali diagnosticare le malattie; la disponibilità di strutture narrrative che sintetizzino in problemi dei singoli individui in sindromi culturalmente significative; la possibilità di utilizzare metafore, idiomi ed altre forme simboliche centrali che portano alla costruzione di interpretazioni eziologiche della patologia così da legittimare azioni terapeutiche pratiche; l’esistenza di ruoli e carriere da guaritori; l’utilizzo di strategie retoriche che il guaritore utilizza per portare pazienti e familiari a cimentarsi con le attività terapeutiche; la disponibilità di una enorme varietà di terapie che combinano operazioni simboliche e pratiche, con l’intento di controllare I sintomi o le cause.
[3] Vedi il secondo post della serie Uomo e piante
[4] Evidente nella fisiologia umana – Vedi il sesto post della serie Uomo e piante
[5] Che si basa sulla combinazione dei dati archeologici con dati etnobotanici ed antropologici (Last, Murray “Non-western concepts of disease”. In Bynum, W.F., e Porter, Roy (1993) Companion Encyclopedia of the History of Medicine. Vol. 1 Routledge, London, UK, p. 634 ff. e bibliografia; Rothschild, H. (ed.) (1981) Biocultural Aspects of Disease, New York, Academic Press.
Johns
[6] cfr. Johns T. The origins of human diet and medicine. University of Arizona Press, 1999
[7] In mancanza di dati archeologici, la fonte più importante di inferenze sul passato sono le condizioni di vita odierne delle ultime popolazioni di cacciatori raccoglitori
[8] Vedi il quarto post della serie Uomo e piante
[9] Il fenomeno mondiale dello sciamanesimo è un modello molto antico (presente fin dal paleolitico) e particolare della figura del guaritore popolare, uno specialista del soprannaturale, del mondo invisibile dei poteri e delle forze divine dalle cui azioni distruttive la società deve essere protetta.
[10] E’ probabile che al contempo si osservasse una riduzione della mortalità adulta a causa dello sviluppo dell’immunità nei grandi gruppi urbani
[11] Logan, Dixon, 1994 op. cit
[12] l’impossibilità o l’impraticabilità dei tipici sistemi di controllo della popolazione tipici dei gruppi di cacciatori-raccoglitori a causa del ritmo troppo elevato di riproduzione nelle società agricole, insieme alla aumentata morbilità femminile a causa dell’elevato numero di parti e dell’anticipo del menarca (Logan, Dixon, 1994 op. cit)
[13] Un problema che non intendo qui pormi esplicitamente è quello di chiarire il legame e la relativa dipendenza o indipendenza delle teorie mediche da altre strutture concettuali proprie della società che le esprime. Capire cioè se le idee sulla malattia debbano essere comprese come sottosistemi del complesso ideologico dominante o se abbiano una loro indipendenza;  Cfr. Bynum e Porter 1993 op. cit.
[14] Galeno, Claudio De simplicium medicamentorum temperamentis ac facultatibus, ed. Kuhn, 11:379-892; 12:1-377
[15] Nella medicina Egiziana antica, centrale nella teoria patologica era la malattia denominata whdw, costituita da una “essenza putrefattiva” che dall’intestino passava al flusso sanguigno per arrivare ai tessuti, . Nei testi di medicina tibetana si racconta che la prima malattia sia stata l’indigestione, che venne curata con un rimedio offerto ai primi uomini da Brahma: acqua calda per indurre il vomito. L’utilizzo di emetici, purganti, espettoranti e sudorifici si ritrova nella medicina tradizionale in Africa, America, ed Europa, ed anche in contesti contemporanei (come la naturopatia).
[16] Heinrich, M, Ankli, A, Frei, B, Weimnn, C, Sticher, O (1998) “Medicinal plants in Mexico: Healers’ consensus and cultural importance”.  Soc. sci. Med. 47 (11):1859-1871; Saslis-Lagoudakis C.H., Klitgaard B.B., Forest F., Francis L., Savolainen V., Williamson E.M., Hawkins J.A. (2011) “The use of phylogeny to interpret cross-cultural patterns in plant use and guide medicinal plant discovery: An example from Pterocarpus (Leguminosae).” PLoSONE, 6(7): e22275
[17] Moerman D.E., Pemberton R.W., Kiefer D., Berlin B. (1999) “A comparative analysis of five medicinal floras.” J Ethnobiol 19(1):49-67; Pardo-de-Santayana M., Tardío J., Blanco E., Carvalho A.M., Lastra J.J., San Miguel E., et al. (2007) “Traditional knowledge of wild edible plants used in the northwest of the Iberian Peninsula (Spain and Portugal): a comparative study.” J Ethnobiol Ethnomed, 3, 27; Molares S., and Ladio A. (2009) “Chemosensory perception and medicinal plants for digestive ailments in a Mapuche community in NW Patagonia, Argentina.” J. Ethnopharmacol, 123(3), 397-406
[18] Leonti M., Ramirez F.R., Sticher O., Heinrich M. (2003) “Medicinal Flora of the Popoluca, Mexico: A botanical systematical perspective.” Econ Bot 57(2):218-230; Moerman D.E., Pemberton R.W., Kiefer D., Berlin B. (1999) “A comparative analysis of five medicinal floras.” J Ethnobiol 19(1):49-67; Treyvaud Amiguet V., Thor Arnason J., Maquin P., Cal V., Sanchez-Vindas P.,  Poveda Alvarez L (2006) “A regression analysis of Q’eqchi’ Maya medicinal plants from Souther Belize.” Econ Bot 60(1):24-38
[19] Le tre famiglie mediamente più utilizzate risultavano essere Asteraceae, Lamiaceae ed Apiaceae (Moerman D.E., Pemberton R.W., Kiefer D., Berlin B. (1999) “A comparative analysis of five medicinal floras.” J Ethnobiol 19(1):49-67;  Leonti M., Ramirez F.R., Sticher O., Heinrich M. (2003) “Medicinal Flora of the Popoluca, Mexico: A botanical systematical perspective.” Econ Bot 57(2):218-230; Treyvaud Amiguet V., Thor Arnason J., Maquin P., Cal V., Sanchez-Vindas P.,  Poveda Alvarez L (2006) “A regression analysis of Q’eqchi’ Maya medicinal plants from Souther Belize.” Econ Bot 60(1):24-38
[20] Leonti M., Ramirez F.R., Sticher O., Heinrich M. (2003) Op. cit.; Treyvaud Amiguet V., Thor Arnason J., Maquin P., Cal V., Sanchez-Vindas P.,  Poveda Alvarez L (2006) Op. cit.

[21] Heinrich, M, Ankli, A, Frei, B, Weimnn, C, Sticher, O (1998) “Medicinal plants in Mexico: Healers’ consensus and cultural importance”.  Soc. sci. Med. 47 (11):1859-1871; Leonti M., Ramirez F.R., Sticher O., Heinrich M. (2003) Op. cit.
[22] Reyes-Garcia V. (2010) “The relevance of traditional knowledge systems for ethnopharmcological research: theoretical and methodological contributions.” Journal of Ethnobiology and Ethnomedicine 6:32
[23] “Medicinal plants which are most important to the community have odors and flavors which are relevant in the determination of their use”  (Molares S., & Ladio A. (2009) “Chemosensory perception and medicinal plants for digestive ailments in a Mapuche community in NW Patagonia, Argentina.” Journal of Ethnopharmacology, 123(3), 397-406)
[24] Molares S., and Ladio A. (2009) “Chemosensory perception and medicinal plants for digestive ailments in a Mapuche community in NW Patagonia, Argentina.” J. Ethnopharmacol, 123(3), 397-406
[25] Pieroni A., Houlihan L., Ansari N., Hussain B., Aslam S. (2007) “Medicinal perceptions of vegetables traditionally consumed by South-Asian migrants living in Bradford, Northen England” J. Ethnopharmacol, 113:100-110
[26] Reyes-Garcia V. (2010) “The relevance of traditional knowledge systems for ethnopharmcological research: theoretical and methodological contributions.” Journal of Ethnobiology and Ethnomedicine 6:32
[27] Casagrande D.G. (2000) “Human taste and cognition in Tzeltal Maya medicinal plant use.” J Ecol Anthr. 4:57-69
[28] Brett propone che le persone alla ricerca di una nuova pianta medicinale inizierebbero la loro indagine selezionando piante che hanno un sapore simile a piante delle quali si sa che inducono effetti fisiologici simili a quelli che si intendono derivare dalla nuova pianta (Brett JA (1994) “Medicinal plant selection criteria among the Tzeltal Maya of Highland Chiapas, Mexico”. Ph.D diss., University of California).
[29] Casagrande D.G. (2000) Op. cit.
[30] Shepard G.H. (2004) “A sensory ecology of medicinal plant therapy in two Amazonian societies.” Am Anthr; 106:2, 252-266
[31] Akli, A, Sticher, O, and Heinrich M (1999) “Yucatec Maya medicinal plants versus nonmedicinal plants: Indigenous characterization and selection.” Human Ecology 27:557-580.  E in mancanza di studi sistematici non è ancora possibile supporre una sovrabbondanza di piante amare nelle Farmacopee rispetto alle Flore generali.
[32] D’altro canto recenti scoperte relative ai rcettori per l’amaro e per il pungente nel tratto gastrointestinale in aree extraorali sembrerebbe poter dare un razionale all’utilizzo di piante amare e pungenti in caso di disordini dell’alto tratto gastrointestinale (cfr Valussi 2011). Nonostante sia indubbio che i recettori per l’amaro non sono abbastanza selettivi per discriminare tra i differenti gruppi chimici in grado di stimolare una attivazione recettoriale, è probabile che alcune delle modificazioni fisiologiche dello stato gastrointestinale (motilità e secrezioni) secondarie all’ingestione di questi composti siano mediate dall’interazione con i recettori stessi. Vale a dire che la risposta fisiologica è al composto amaro in quanto composto che elicita una sensazione amara, a prescindere dalle sue caratteristiche chimiche. Da questo punto di vista uindi forse un ruolo per i composti organolettici può essere preservato.
[33] Casagrande D.G. (2000) Op. cit.; Pieroni A., Nebel S., Quave C., Munz H., Heinrich M. (2002) “Ethnopharmacology of liakra: traditional weedy vegetables of the Arbereshe of the Vulture area in southern Italy” J. Ethnopharmacol, 81:165-185
[34] Casagrande D.G. (2000) Op. cit.
[35] Johnson L.M. (2006) “Gitksan medicinal plants-cultural choice and efficacy.” J Ethnobiol Ethnomed 2:29
[36] Recentemente alcuni ricercatori hanno criticato l’opinione accettata che vede nella dottrina delle segnature una superstizione primitiva, proponendo che essa sia principalmente uno strumento usato per trasferire informazioni, in particolare nelle società preletterarie. Le segnature sarebbero quindi non uno strumento euristico per scoprire nuove attività in piante sconosciute, bensì attribuzioni post hoc utili a memorizzare le proprietà delle piante e quindi a disseminare l’informazione, e sono quindi utili anche al ricercatore moderno che si interroghi sulla conoscenza tradizionale. Cfr. Bennett, B.C., et al. 2007 op. cit

Uomo e piante 6/dimoltialtri

Ritorno dopo un momentaneo ma necessario “stacco” alla mia soap su uomini e piante. Se siete ancora con me 🙂 siamo arrivato alla puntata numero 6, e le precedenti sono qui, qui, qui, qui, e qui

E’ arrivato il momento di esplicitare meglio l’ipotesi co-evolutiva della nascita della medicina, e per fare ciò è necessario fare un passo indietro per giustificare l’idea che esista una connessione significativa e preculturale tra uomo e piante.

La teoria unificata delle comunicazioni cellulari
Come ci ricorda Meinwald [1] il nostro è un modo di suoni e visioni, e tendiamo a non renderci conto degli eventi chimici che ci circondano, del fatto che tutti gli organismi emettono e rispondono a segnali di tipo chimico, formando una vasta rete di interazioni comunicative fondamentali, attrattive, difensive, associative, ecc.

Fin dalle origini della vita infatti, il problema che i primi organismi cellulari hanno dovuto risolvere è stato quello della comunicazione tra cellula ed ambiente circostante e tra cellula e cellula, ed il problema è stato risolto da tutti gli organismi nello stesso modo, attraverso il linguaggio di molecole che possono penetrare le membrane e interagire con il nucleo oppure che trovano recettori specifici sulla membrana cellulare che mediano poi dei cambiamenti interni.

Ragionando da una prospettiva abbastanza ampia è quindi ovvio che uomini e piante, anzi, animali e vegetali, debbono mostrare dei legami, non soltanto filogenetici ma di relazione, comunicativi: affinché la vita di organismi diversi, anche appartenenti a Regni differenti,  possa prosperare in uno stesso ambiente, vi sono state, e vi devono essere state, continue relazioni mediate da un linguaggio molecolare.

La “teoria unificata delle comunicazioni cellulari” vuole che queste relazioni, ed i percorsi biogenetici del metabolismo secondario che creano le molecole messaggere, siano nati molto presto nella storia dell’albero evolutivo e siano spesso comuni tra i Regni Animalia e Vegetalia. [2] Ciò significa che nonostante la distanza filogenetica tra organismi appartenenti ai due Regni, essi possano però riconoscere gli stessi messaggeri. [3] Questo dato di base spiega la possibilità delle interazioni tra piante ed animali ed il ruolo di intermediari che hanno i metaboliti secondari.

Come rispondere all’ambiente

La possibilità per una pianta di “leggere” i messaggi di altre piante le permette di rispondere a degli indizi ambientali modificando il proprio schema di risposta. Organismi animali possono usare questi indizi per riconoscere lo stato dell’ambiente esterno ed “decidere” come allocare le proprie risorse energetiche.

Un esempio di questo utilizzo dei messaggi molecolari negli animali superiori potrebbe essere legato al fenomeno della senescenza. Organismi che si siano evoluti in ambienti mutevoli possono trarre vantaggio dalla capacità di puntare su un successo riproduttivo immediato a scapito della longevità in caso di ambiente più favorevole, o di puntare sulla longevità e su una ritardata maturazione sessuale in caso di condizioni sfavorevoli. [4]

Esempi di questi percorsi di allarme comprenderebbero varie chinasi legate alla sopravvivenza delle cellule, i fattori di trascrizione NRF2 e CREB, e le deacetilasi istoniche della famiglia della sirtuina, una proteina nota come Sir2 nei lieviti e SIRT1 nell’uomo.

Le Sir2 (Silent information regulator 2), sono presenti in tutti gli organismi, dagli eubatteri agli eucarioti, compresi gli esseri umani. Svolgerebbero due funzioni primarie nei mammiferi: la prima è  coordinare gli schemi di espressione genica (ovvero decidere quali geni sono attivati e quali disattivati in ogni singola cellula, per evitare ad esempio che una cellula renale inizi ad esprimere tendenze epatiche) e mantenere la stabilità di certe regioni cromosomiche e sopprimere l’esagerata espressione di certi geni (silenziamento genico) aumentando la stabilità del genoma; la seconda è funzionare da agenti riparatori emergenziali in caso di danno al DNA. [5] Il problema sorge dal fatto che quando le sirtuine sono occupate a riparare il DNA non regolano più l’espressione dei geni. Fino a che i danni al DNA sono rari le sirtuine riescono a compiere entrambi i compiti con efficienza, ma quando questi danni aumentano (tipicamente con l’età) la de-regolazione dell’espressione genica diventa cronica, e questo sembra essere legato, nei modelli animali utilizzati, a fenotipi di senescenza. [6]

Negli ultimi decenni sono stati scoperti molti composti di origine vegetale (tre esempi sono resveratrolo, i sulforafani ed i curcuminoidi) sintetizzati in risposta a vari tipi di emergenza (siccità, radiazioni, attacchi di insetti, infezioni, ecc.) per stimolare diverse risposte adattive e la rigenerazione cellulare stimolando una maggior espressione di sirtuine ed allungando la vita media,  proteggendo le cellule da lesioni stimolando la produzione di antiossidanti, fattori neurotropici ed altre proteine correlate allo stress.

Il modello coevolutivo

Ma il legame che viene proposto va oltre al dato generalizzato della teoria unificata delle comunicazioni cellulari, anche se si fonda su di essa. Esso si basa sull’ipotesi che l’utilizzo delle piante come fonte privilegiata di nutrienti abbia plasmato la fisiologia dell’uomo.

I nostri antenati, secondo l’ipotesi antropologica attualmente più accreditata, erano onnivori-foliovori, nel senso che avevano una decisa preferenza, certamente ispirata dalla necessità, per le piante ed in particolare per le foglie. E’ molto probabile che l’uomo preferisse sempre cibo denso in energia e povero di composti tossici (carne, tuberi, frutta) piuttosto che foglie; d’altro canto tuberi e frutti non sono disponibili tutto l’anno e sono più difficili da scovare, mentre le foglie sono più facilmente sfruttabili perché sono sempre presenti su tutto il territorio antropizzato, ed è probabile che siano sempre stati parte della dieta, oltre ad essere un “salvavita” in caso d’emergenza.

Questa forzata “convivenza alimentare” con le piante ci ha costretti a confrontarsi con molteplici messaggi chimici (spesso difensivi e quindi tossici) ai quali è stato necessario fornire delle risposte, cioè adattarsi, in qualche modo co-evolversi con essi e con le piante che li contenevano.

La tesi sostenuta da un certo filone antropologico (vedi Johns [12]) è che l’adattamento abbia fatto sì che le proprietà che rendevano le piante tossiche o non commestibili (limitando le possibilità di alimentazione dell’uomo) siano le stesse che le hanno rese attive a livello farmacologico (rappresentando quindi un fattore di promozione della salute). La nostra specie, nell’adattarsi alle tossine delle piante, le ha portate ad essere una parte essenziale della nostra ecologia interna, le ha “introiettate” facendo sì che non ci danneggiassero (o almeno non ai livelli ai quali le ingeriamo) ma anzi che potessero esserci utili.

Ne consegue l’ipotesi che gli esseri umani selezionino le piante sulla base della loro composizione chimica e che l’ingestione dei composti chimici vegetali sia parte di una risposta adattiva integrata che possiede elementi biologici e culturali, e che la nostra eredità biologica, associata allo snodo essenziale costituito dalla rivoluzione neolitica (la domesticazione delle piante e la loro coltivazione), pongano le basi per la nascita dell’uso medicinale delle piante. [7]

Questa ipotesi è andata rafforzandosi nei decenni grazie ai molti studiosi che l’hanno corroborata con vari pezzi di puzzle.


Prove indirette: i nostri simili
Un supporto, seppur indiretto, alla tesi che l’utilizzo delle piante a scopo medicinale da parte dell’uomo abbia origini preculturali e coevolutive viene dagli studi sulla zoofarmacognosia, ovvero sull’automedicazione con le piante da parte degli animali non umani. [8]

Glander, Lozano, Huffman ed altri autori portano vari esempi di zoofarmacognosia, alcuni dei quali riporto di seguito. [9]

Gli elefanti malesi si cibano di una leguminosa [Entada schefferi Ridley – Fabaceae] prima di intraprendere un lungo cammino; in India i cinghiali selvatici dissotterrano e si nutrono in maniera selettiva delle radici di Boerhavia diffusa L. [Nyctaginaceae], usate anche dagli esseri umani come rimedio antelmintico, mentre i maiali si ciberebbero delle radici del melograno [Punica granatum L. — Punicaceae] per la sua tossicità sui nematodi. Gli scimpanzè maschi della Tanzania occidentale, nei periodi dell’anno nei quali aumentano le infestazioni di nematodi, utilizzano le foglie di Aspilia spp. (spesso A. mossambicensis) [Asteraceae] seguendo un rituale molto particolare e completamente diverso dalla ritualità normalmente associata all’alimentazione: arrotolano le foglie, le mettono tra lingua e guancia e poi le ingoiano senza masticarle.

Va notato che Aspilia contiene principi attivi antibatterici, antifungini e antelmintici (thiarubrina A), e che la modalità di assunzione potrebbe favorire l’assorbimento di tali composti attraverso le mucose della guancia. Gli scimpanzè mostrano altri comportamenti molto interessanti: le femmine ingeriscono foglie di Lippia plicata Bak. [Verbenaceae] (usata dagli indigeni come stomachico ed insetticida) quando sembrano avere dei disturbi gastrointestinali, e vari maschi malati sono stati notati mentre succhiavano il midollo del fusto di Vernonia amygdalina Del. [Asteraceae], una pianta molto amara (contiene lattoni sesquiterpenici amari, antelmintici e antischistosomiaci), raramente usata a scopo alimentare ma comune nella medicina tradizionale dell’Africa orientale in caso di febbri malariche, schistosomiasi, dissenteria amebica, elmintiasi, diarrea, mal di stomaco, inappetenza e scorbuto, e dagli agricoltori in caso di parassiti intestinali dei maiali.

Negli esseri umani la Vernonia è efficace contro Giardia lamblia, ossiuri e nematodi dei generi Ancylostoma, Uncinaria, Necator. E’ interessante notare come i primati utilizzino raramente le foglie e la corteccia della pianta, nonostante la maggior concentrazione in composti attivi. Il fatto che queste parti della pianta contengano anche composti tossici è una possibile spiegazione di questo comportamento. I primati utilizzano in maniera simile anche i fusti di Palisota hirsuta (Thunb.) K. Schum. [Commelinaceae] e Eremospatha macrocarpa (Mann and Wendl.) Wendl. [Palmae].

Alouatta palliata (una scimmia urlatrice) mostra una frequenza molto ridotta, rispetto agli scimpanzè, di carie o gengiviti, dato in parte spiegabile con la dieta povera in frutta zuccherina, ma forse anche con il consumo di anacardi [Anacardium occidentale L. — Anacardiaceae], frutti che contengono acido anacardico e cardolo, composti attivi contro i batteri gram-positivi tipici della carie; le stesse scimmie urlatrici sono soggette a parassitosi gastrointestinale, ma quelle di loro che si alimentano anche con frutti dei ficus [Ficus spp. — Moraceae] lo sono di meno. Dato che il latice di Ficus è antelmintico, è possibile che il consumo di foglie e frutti contribuisca ad abbassare il carico di parassiti. [10]

Uno dei primati meno comuni (Brachyteles arachnoides) è preda, come altri, di parassitosi intestinale, ma tra i gruppi che ne soffrono di meno si nota uno schema di alimentazione particolare.  All’inizio della stagione delle piogge questi individui fanno uno sforzo particolare per mangiare piante che prima non assaggiavano, in particolare le leguminose Apuleia leiocarpa (J. Vogel) J.F. Macbr. e Platypodium elegans Vogel. [Fabaceae] (ricche in composti antimicrobici e isoflavoni).

I Colobus rossi normalmente preferiscono foglie giovani, ricche in proteine e povere in tannini ed altri composti fenolici, ma di quando in quando mangiano foglie ad elevato contenuto in tannini, che potrebbero servire per detossificare gli alcaloidi e ridurre il gonfiore intestinale. [11]

I babbuini soffrono comunemente di schistomatosi, ed è stato notato, nei gruppi che vivono presso le cascate Awash (Etiopia), un comportamento particolare degli individui che ne sono affetti gravemente: essi si nutrono di foglie e frutti di Balanites aegyptiaca (L.) Del. [Zygophyllaceae], che contengono diosgenina, attiva contro Schistosoma cercariae.

Prove dirette: la fisiologia ed il comportamenti umani. [12]
Se l’ipotesi appena esposta è valida, ci deve essere rimasta qualche traccia del processo co-evolutivo nel nostro organismo, sia di tipo fisiologico che comportamentale. La difficoltà sta però nel riconoscere se e quali di queste caratteristiche siano tracce coevolutive, perché ci è dato interpretarle come tali solo a posteriori, senza il beneficio di una prova diretta, ma solo tramite inferenze.

Ad esempio, gli esseri umani hanno un intestino adatto a cibi densi di nutrienti ma mantengono una certa capacità di digerire fibre, e possono sopportare dosi relativamente elevate di composti allelopatici; l’uomo è inoltre capace di sopperire al proprio fabbisogno di acidi grassi essenziali tramite i loro precursori presenti nei vegetali.  Queste caratteristiche potrebbero indicare una consuetudine dell’uomo con le piante. Si è anche ipotizzato che la preferenza dell’uomo per il sale (di più di un ordine di magnitudo superiore al suo fabbisogno) potrebbe essere spiegato con la carenza di sodio nelle piante della savana dove Homo si è evoluto, e, come si è visto più sopra, l’incapacità di sintetizzare la vitamina C potrebbe essere spiegata con la sua ubiquità ed abbondanza nei vegetali.

La presenza nella saliva dell’uomo di proteine ricche in prolina (PRP) è un altro importante esempio: l’uomo è in grado di rispondere all’ingestione di tannini mantenendo le parotidi in uno stato di induzione, tanto che il 70% delle secrezioni salivari è del tipo PRP: queste PRP possono servire a legare i tannini presenti nel cibo e renderli meno irritanti per il tratto gastrointestinale e forse per renderli meno attivi sul cibo che ingeriamo (riducendone gli effetti antinutrizionali).

Esempi più generici del rapporto dell’uomo con sostanze velenose sono il vomito ed i sensi chimici.


Il vomito è un istintivo meccanismo di rigetto di una sostanza che si è immediatamente riconosciuta come tossica o in qualche modo non desiderata.

I sensi chimici, gusto ed olfatto mostrano di poter discriminare sostanze vegetali potenzialmente pericolose da altre potenzialmente utili (discriminando tra amaro e dolce ad esempio), e mostrano di poter attivate risposte condizionate molto potenti, in particolare quelle negative associate al cibo. Ciò significa che a seguito di un malessere gastrointestinale legato temporalmente (a prescindere dal legame causale) all’ingestione di cibo, il sapore e l’odore di quel cibo saranno legati al malessere rendendo molto difficile cibarsene ancora. Questo è un tipo di meccanismo di apprendimento, perché una sostanza che abbia provocato un malessere gastrointestinale probabilmente è tossica, o comunque dobbiamo considerarla come tale. [13]

C’è una differenza importante tra olfatto e gusto, perché il primo, essendo molto più plastico del gusto, è meno legato alla percezione negativa, mentre quest’ultimo, essendo limitato alla discriminazione di quattro o cinque sapori, è più fortemente e più meccanicamente legato alla risposta condizionata.


Altro indizio molto rilevante è la presenza di enzimi detossicanti a livello epatico (e in misura minore renale, intestinale e polmonare), enzimi che rendono meno tossiche e facilmente eliminabili varie sostanze di origine vegetale, e che non sono molto specializzati, non hanno cioè la capacità di detossificare sempre e con efficienza una sostanza particolare, ma hanno la capacità plastica di adattarsi a molti problemi diversi, e questo è un indizio che si situa bene nel quadro di una dieta umana prevalentemente onnivora-foliovora (da cui l’esistenza di enzimi che hanno come substrato delle sostanze vegetali), con fonti alimentari molto diversificate (da cui la necessità di plasticità nella risposta).

Possiamo considerare il ruolo degli enzimi detossificanti in congiunzione con la neofobia, cioè il fatto che l’uomo adulto mostri la tendenza ad esser circospetto rispetto alle sostanze che deve assumere. [14]

Dato che il meccanismo epatico esiste per detossificare una sostanza potenzialmente tossica, il fatto di assaggiare sempre piccole quantità di un cibo o di una sostanza nuova permette di non avvelenarsi accidentalmente, e di non sovraccaricare i meccanismi detossificanti. Quindi la combinazione dei due meccanismi ci può permettere di assaggiare un cibo nuovo che può essere pericoloso senza però morire dopo averlo assaggiato.

————————————-

Note al testo

[1] Eilser T, Meinwald J (1995) “Preface” in Thomas Eilser and Jerrold Meinwald (eds) Chemical ecology: The Chemistry of Biotic Interaction National Academy Press Washington, D.C. 1995

[2] Roth J., Leroith D. (1987) The Sciences, May-June:51

[3] Lamming D.W., Wood J.G., Sinclair D.A. (2004) “Small molecules that regulate lifespan: evidence for xenohormesis”. Mol Microbiol; 53(4):1003-9; Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., Lavu, S., Wood, J.G., et al. (2003) “Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan”. Nature 425: 191–196; Mattson MP, Cheng A. (2006) “Neurohormetic phytochemicals: Low-dose toxins that induce adaptive neuronal stress responses”. Trends Neurosci; 29:632–9

[4] Kuzawa C et al. (2008) “Evolution, developmental plasticity and metabolic disease” in SC Stearns and JC Koella (eds.) Evolution in health and disease 2nd edition Oxford UP; Austad SN, Finch CE (2008) “The evolutionary context of human aging and degenerative disease” in in SC Stearns and JC Koella (eds.) op. cit.; Ackermann M e Pletchr SD (2008) “Evolutionary biology as a foundation for studying aging and origin-related disease”. In SC Stearns and JC Koella (eds.) op. cit.

[5] Guarente, L. (2000) “Sir2 links chromatin silencing, metabolism and aging” Genes Dev 14:1021-1026

[6] Oberdoerffer et al (2008) “SIRT1 redistribution on chromatin promotes genome stability but alters gene expression during aging”; Cell 135,  6

[7] Con questo non si intende proporre l’appiattimento della cultura sulla natura, la riduzione della medicina a fatto biologico e della malattia a rapporto ecologico. Nè si suppone che l’utilità presente dei composti xenobiotici per l’organismo che li ingerisce siano in parte o del tutto riconducibili ad adattamenti passati. Una origine evolutiva, spiega bene Gould (Gould, S.J. “Darwin tra fondamentalismi e pluralismo”. In Pino Donghi (a cura di) La medicina di Darwin. Roma, Laterza, 1998) non si appiattisce su quella adattiva, perché la selezione naturale non esaurisce tutti i meccanismi evolutivi, e l’enorme chemiodiversità delle piante (che esprimono circa i 4/5 di tutti i i composti farmacologicamente attivi conosciuti) offrirebbe comunque materiale farmacologicamente attivo al di là dei rapporti ecologici animale-pianta.

[8] Nel lavoro seminale in questo campo (Rodriguez, E., R. Wrangham. H. Stafford e Downum K. eds., (1993) “Zoopharmacognosy: The use of medicinal plants by animals”. Recent advances in phytochemistry, 89-105) gli autori (responsabili anche del conio del termine zoofarmacognosi) scrivono che:

“The combination of natural products, trichomes and other leaf features are important in the fitness of wild animals,”…“the observation of animals using plants is not new since Amazonian Indians and many people of the African forests tell of how animals use plants and how they copy the animals”

[9] Glander K.E. “Nonhuman primat self-medication with wild plant foods”. In N.L., Etkin  (Ed.), 1994 op. cit. pp. 227-239; Lozano, G.A. (1998) “Parasitic stress and self-medication in wild animals” Advances in the study of behaviour. 27: 291-317; Huffman M.A. (2001) “Self-medicative behavior in the African Great Apes: An evolutionary perspective into the origins of human traditional medicine”. BioScience.; Vol. 51(8): pp. 651-661.

[10] Una ipotesi più difficile da sostanziare ma affascinante è quella che vuole che l’ingestione di piante da parte delle femmine di Alouatta serva a modificare il normale rapporto maschio/femmina della prole, Glander (1994 op. cit.) ipotizza che alcuni composti delle piante ingerite possano modificare la concentrazione ionica delle mucose vaginali delle femmine, e che questo a sua volta possa modificare selettivamente l’accesso degli spermatozoi che portano un cromosoma X rispetto a quelli a Y dato che X è elettropositivo mentre Y è elettronegativo.

[11] Lo stesso fanno altri primati ed è difficile spiegare questo comportamento senza chiamare in causa la zoofarmacognosi anche perché i tannini sono forse l’unico gruppo di composti che non sono detossificabili se non parzialmente. I tannini possono legarsi e precipitare, e quindi inattivare, le molecole azotate, come appunto gli alcaloidi. Interessante notare che i Colobus mangiano anche terre ricche in caolino (geofagia), che grazie alla loro elevata capacità di adsorbimento possono intrappolare e rendere indisponibili all’assorbimento varie tossine (e nutrienti).

[12] Johns T (1990) The Origins of Human Diet and Medicine. University of Arizona Press; Consiglio, C. e Siani V. (2003) Evoluzione e alimentazione: il cammino dell’uomo. Torino: Bollati Boringhieri

[13] Le risposte condizionate positive, cioè quelle che potrebbero essere molto utili, sono invece molto meno forti, più labili, di quelle negative.

[14] Il bambino è molto meno neofobico, ed anche questo è un meccanismo evolutivo: esso deve infatti poter fare esperienza del mondo, deve poter “assaggiare” in vari modi la realtà che lo circonda. L’uomo adulto invece, raggiunto il suo bagaglio di esperienze, sta più attento.

Uomo e piante 5/dimoltialtri

Ed eccoci all’ultima puntata della sezione introduttiva della serie uomo/piante, dove cercherò di sintetizzare i dati principali relativi alla nascita dell’agricoltura, in quanto evento importante nell’articolazione del rapporto tra piante e uomo. Le puntate precedenti si trovano qui, qui, qui, e qui.

L’agricoltura
Gli antecedenti
Il passaggio da caccia-raccolta ad agricoltura, (la cosiddetta “rivoluzione neolitica“), non fu netto e puntuale, nè avvenne ovunque, nè si presentò con le stesse modalità. Fu lento, graduale, non lineare, avvenne indipendentemente in molti luoghi. Come nota Diamond, l’agricoltura non fu una scoperta o una invenzione, bensì una “evoluzione che prese il via come sottoprodotto di scelte spesso inconsce”. (30)

E’ ipotizzabile che le prime esperienze di coltivazione avvennero all’interno delle foreste pluviali, dove a causa della forte competizione per la luce la copertura forestale non permette la crescita del sottobosco. Solo la casuale caduta di alcuni alberi, creando delle radure naturali dove penetra il sole, permette la germinazione dei semi rimasti dormienti e la crescita di varie specie diverse.

I gruppi umani che abitavano la foresta, insediandosi nelle vicinanze di tali radure, ebbero l’opportunità di osservare la crescita di questi “giardini” spontanei.  In più, le deiezioni del gruppo arricchivano il terreno di composti azotati e di semi delle piante alimentari favorite dal gruppo stesso. In questo modo il gruppo avrebbe potuto osservare le fasi di crescita proprio delle piante alimentari a lui utili, e con il tempo avrebbe portato al costume di facilitare la crescita di tali piante  migliorando le condizioni, eliminando la competizione di altre piante, fino alla creazioni di radure artificiali mediante l’abbattimento di alberi di piccola taglia, ovvero avviandosi verso la coltivazione e la addomesticazione con la tecnica del debbio (anche addebbiatura, o taglia-e-brucia, dal termine inglese slash-and-burn: il taglio della vegetazione, il suo essiccamento e combustione per creare piccoli appezzamenti da coltivare a maggese).

Il passaggio dalla coltivazione pre-agricola (intesa come il complesso delle operazioni di semina o impianto, di cura e di raccolta delle piante selvatiche o addomesticate, con o senza aratura del terreno) all’agricoltura (intesa come la coltivazione di piante addomesticate con aratura sistematica del terreno), (31) avviene in maniera indipendente in vari siti, nell’arco di tempo che va da ca. 10.000 anni fa a 3.500 anni fa.

La nascita dell’agricoltura
Medio Oriente
In Medio Oriente l’evidenza archeobotanica sulla nascita dell’agricoltura si concentra nell’area intorno alle pianure fertili della Mesopotamia dal levante meridionale alle colline meridionali ai piedi dei Monti Zagros.

Secondo l’ipotesi ricevuta sulla nascita dell’agricoltura in Medio Oriente, basata soprattutto sui lavori di Hillman (incentrati sui ritrovamenti presso il sito di Tell Abu Hureyra, sulle rive dell’Eufrate in Siria), la coltivazione dei cereali iniziò in risposta ad un improvviso cambiamento climatico avvenuto tra 11.000 e 10.000 anni C14 fa (nel cosiddetto stadiale del Dryas recente). Il passaggio, sempre secondo questa ipotesi, avvenne in tempi relativamente brevi ed in maniera puntuale, e le cultivar sviluppate in questo periodo di tempo viaggiarono dalla loro zona di origine in tutta Europa insieme agli agricoltori migranti, ed insieme ai loro idiomi di tipo Indo-Europeo (secondo la cosiddetta Ipotesi Anatolica o Teoria della Discontinuità Neolitica di Renfrew). (32)

Secondo la teoria corrente, questo passaggio climatico, che portò a condizioni più fredde e secche, spinse verso il declino varie specie selvatiche meno adattate al clima arido, in primis le lenticchie [Lens spp. — Fabaceae] ed altri legumi, in seguito le forme selvatiche del Triticum (il farro selvatico – Triticum dicoccoides (Korn. ex Asch. & Graebn.) Schweinf. e il piccolo farro selvatico – Triticum boeoticum Boiss., (33) di Secale spp., poi Stipa spp., Stipagrostis spp., Scirpus spp., e per ultime le specie più resistenti alla siccità, le Chenopodiaceae.

Lenticchie

Segale

Questo declino spinse probabilmente le popolazioni umane a coltivare alcune specie più produttive per sopravvivere al periodo di carestia. I frutti del farro selvatico erano abbastanza grossi da essere sfruttati per sopperire alla riduzione della vegetazione. Una successiva ibridazione del farro aumentò l’eterozigosi, causando la scompare in alcuni individui del rachide fragile che aiuta la disseminazione anemofila ma rende difficile la raccolta.

Un recente studio (34) mette però in dubbio sia la data di inizio dei primi “esperimenti” agricoli, che verrebbe anticipata di molto, sia i tempi brevi per la stabilizzazione delle cultivar (che avrebbero invece avuto bisogno di millenni per diventare stabili). La scoperta di più di 90.000 frammenti vegetali presso il sito archeologico di Ohalo II in Siria, risalenti a 23.000 anni fà, indicherebbe la raccolta di cereali selvatici 10.000 anni prima del periodo previsto dalla teoria corrente, e certamente prima del Dryas.

Inoltre, lo studio delle frequenze di individui con mutazione del rachide (la forma rigida che riduce la dispersione dei frutti) mostra che tra il momento della sua prima apparizione (9.250 anni fà) e la sua fissazione (ovvero con la stabilizzazione della mutazione nella popolazione, che diventa monofiletica) passarono ben 3.000 anni, quando già la dispersione dell’agricoltura era iniziata, in tempi quindi molto più lunghi di quelli previsti dalla teoria ricevuta. Per finire, il modello matematico proposto supporta una origine delle piante coltivate attraverso processi più complessi, di inter-ibridazione tra varie specie, e in vari tentativi di addomesticazione.

Quale che sia stato l’esatto momento e l’esatto meccanismo che permise la selezione di piante con caratteristiche genetiche particolari, la selezione di questa caratteristica favorevole per l’uomo rese possibile raccolti più ricchi in meno tempo e con meno perdite, capaci di sostenere popolazioni umane più dense. L’ibrido venne coltivato insieme al piccolo farro selvatico e all’orzo spontaneo [Hordeum spontaneum K. Koch o H. vulgare subsp. spontaneum (K.Koch) Thell.].

Orzo selvatico

A partire dal Neolitico preceramico A (PPNA – ca. 10.300 anni fa) il clima tornò più caldo e umido facilitando così l’espansione delle coltivazioni. Le tre specie di cereali summenzionate passarono, in un lungo processo di interazione con l’uomo, dallo stadio selvatico a quello di “coltivazione incipiente” e di “addomesticazione”, passano cioè attraverso la trasformazione genetica verso forme addomesticate grazie all’azione di popolazioni sempre più sedentarie, fino ad arrivare ad una vera e propria fase di agricoltura a livello di villaggio. Questo stadio viene anche definito come stadio della coltivazione incipiente e della addomesticazione, durante il quale iniziano quei processi di modificazione genetica delle piante che portano verso la addomesticazione, e dove le popolazioni passano da sostentamento grazie a raccolta semisedentaria all’agricoltura.

L’evidenza più ampia di uno stile di vita schiettamente agropastorale si ha però solo per il periodo PPNB (da 9 500 a 7 500 anni fa), detto anche stadio dell’agricoltura piena.
E’ a questo periodo che fanno riferimento le evidenze archeobotaniche sulla presenza di tutte le principali specie agricole: orzo [Hordeum vulgare tetrastico e distico], piccolo farro [T. monococcum, forma coltivata di T. boeoticum] e farro [T. dicoccum forma coltivata di T. dicoccoides], lenticchie [Lens culinaris Medik — Fabaceae], piselli [Pisum sativum L.– Fabaceae], ceci [Cicer arietinum L.– Fabaceae], lino [Linum usitatissimum — Linaceae] e Vicia ervilia (L.) Willd. [Fabaceae].

Alla fine del PPNB l’agricoltura viene praticata in tutto il Sud Est asiatico e si sposta ad Ovest verso Cipro, attraverso l’Anatolia verso l’Europa, a Sud Est verso l’Egitto e ad Est verso l’Asia Centrale e Meridionale.
Tra 7000 e 5000 anni fa le coltivazioni vengono portate nelle pianure aride tra il Tigri e l’Eufrate, dove inizia la coltivazione intensiva supportata dall’irrigazione, e la parallela nascita delle prime città e dei primi piccoli templi Sumeri. (35)

Asia
Non esistono dati archeobotanici di questo tipo, a questo livello di dettaglio, per l’Asia.

I dati permettono solo di dire che in Cina centro orientale, nell’area dello Huang-ho (Fiume Giallo) tra 8.000 e 6.000 anni fa, nel Primo Paleolitico, esistevano degli insediamenti umani che praticavano la coltivazione del riso e di due specie di miglio [Panicum miliaceum L. — Poaceae; Setaria italica (L.) P. Beauv — Poaceae] (più dubbia è invece la presenza di coltivazioni di soia [Glycine max (L.) Merr. — Fabaceae]).

Riso

Miglio

Da quest’area il riso viaggiò con l’uomo verso Nord in Corea, dove era certamente coltivato 3200 anni fa, e forse verso ovest, in India settentrionale, anche se la presenza del cereale nel subcontinente 4500 anni fa potrebbe anche essere dovuta ad una addomesticazione indipendente.

Il viaggio del riso fu fermato dal clima equatoriale in Indonesia, da dove l’agricoltura si espande (verso ad esempio la Nuova Guinea) con un modello alternativo di agricoltura incipiente, basato su radici e tuberi come l’igname [Dioscorea alata L. e D. esculenta (Lour.) Burkill. — Dioscoreaceae], e il taro [Colocasia esculenta (L.) Schott — Araceae], piuttosto che su cereali (secondo alcuni autori le prime coltivazioni sono proprio state quelle di radici e tuberi nelle foreste tropicali).

Africa
Contrariamente a quanto solitamente ritenuto, è probabile che l’agricoltura si sia sviluppata in maniera indipendente anche nell’Africa tropicale nord, a sud del Sahara, seguendo in questo caso un modello “misto”: nei climi più secchi del Nord utilizzo e addomesticazione di cereali come il sorgo [Sorghum bicolor (L.) Moench.] e il miglio perla [Pennisetum glaucum — (L.) R. Br.] insieme a legumi quali Vigna unguiculata (L.) Walp. (fagiolo dell’occhio), V. subterranea (L.) Verdc. (pisello di terra) e Macrotyloma geocarpum (Harms) Maréchal & Baudet, e all’albero del Karitè [Vitellaria paradoxa C. F. Gaertn. — Sapotaceae]; nel Sud più umido radici e tuberi [Dioscorea spp.], riso africano [Oryza glaberrima Steud.] e olio da palma [Elaeis guineensis Jacq. — Arecaceae].

Sorgo

Fagiolo dell’occhio

Comunque sia, in tutti questi siti si può parlare di modello agropastorale perché la coltivazione di cereali e legumi va sempre di pari passo all’allevamento di animali da carne e latte, come capre, pecore, ecc.

Le Americhe
Molto diversa è la situazione del continente Americano.
Anche qui abbiamo evidenza, per quanto scarsa e poco organica, della addomesticazione e coltivazione di piante, ma i dati archeologici indicano che non si arrivò se non molto tardi all’allevamento degli animali, per cui la dieta si basò per molto tempo quasi totalmente sulle specie vegetali coltivate o raccolte spontanee, con risultante deficit di proteine e grassi animali.

Vengono solitamente identificate tre aree principali di sviluppo: Mesoamerica (odierno Messico e Centro America), le Ande, e l’Amazzonia.

Mesoamerica
Le principali specie addomesticate in Mesoamerica furono il mais [Zea mays L. — Poaceae], i fagioli [Phaseolus vulgaris L.; P. coccineus L.; P. acutifolius A. Gray– Fabaceae], e le zucchine [Cucurbita pepo L.; C. mixta Pangalo– Cucurbitaceae], ma vengono raccolti e consumati molti frutti, come l’avocado [Persea americana Mill. — Lauraceae], la papaya [Carica papaya L. — Caricaceae], la guava [Psidium guajava L. — Myrtaceae], il sapote blanco [Casimiroa edulis La Llave & Lex. — Rutaceae] e negro [Diospyros digyna Jacq. — Ebenaceae], il peperoncino piccante [Capsicum spp. — Solanaceae] e la ciruela [Spondias mombin L. — Anacardiaceae].

Riguardo all’origine dell’agricoltura, i dati sono molto scarsi. Le evidenze archeologiche indicano che le foreste tropicali a stagione secca dei neotropici furono centri importanti di insediamento umano e coltivazione, coinvolgenti piccoli gruppi di coltivatori che si spostavano al cambiare delle stagioni

Con tutta probabilità la zucchina fu addomesticata ca. 10000 anni fa, ed uno studio recentissimo indicherebbe che il mais fu addomesticato ca. 8700 anni fà, a partire da una pianta selvatica denominata teosinte, nelle foreste tropicali dell’odierno Messico sudorientale, nella valle del Rìo Balsas, e che viaggiò con l’uomo fino a Panama ca. 7600 anni fà, fino ad essere coltivato nell’area settentrionale dell’America del Sud ca. 6000 anni fà. (36)

L’evidenza però suggerisce che le tre specie principali iniziarono ad essere coltivate insieme come sistema agronomico solo 3-4000 anni fa.

Teosinte

Ande
Le specie addomesticate sugli altopiani Andini erano due Chenopodiaceae [Chenopodium quinoa Willd. e Chenopodium pallidicaule Aellen.], i fagioli Lima [Phaseolus lunatus L.], la patata [Solanum tuberosum L. — Solanaceae], delle zucchine locali [Cucurbita moschata Duchesne, e C. ficifolia Bouche] e due camelidi, lama [Lama glama] ed alpaca [Vicugna pacos], almeno 5000 anni fa. Ma le popolazioni non svilupparono mai il sistema agropastorale tipico della mezzaluna fertile.

Amazzonia
In Amazzonia le specie addomesticate furono, come nei tropici asiatici, radici e tuberi, in particolare la manioca o cassava [Manihot esculenta Crantz. — Euphorbiaceae] e le arachidi [Arachis hypogaea L. — Fabaceae]-

Il passaggio all’agricoltura non avvenne invece mai in molte altre aree a clima comparabile come la California, l’Australia sud-ovest, l’Africa meridionale). (37)

Le conseguenze
In quasi tutte le aree di passaggio all’agricoltura la fonte primaria di cibo si ritrova nella combinazione tra uno o più cereali e uno o più legumi, che supplementavano la dieta con olii e amminoacidi assenti nei cereali, come la lisina.

Il passaggio ha probabilmente risposto a pressioni ed esigenze di equilibri energetici, di convenienza e di previsione del futuro, è stata una risposta al declino delle risorse (ad esempio la riduzione nel numero dei grandi mammiferi), alla maggior disponibilità di specie addomesticabili rispetto a quelle spontanee a causa dei cambi climatici della fine del pleistocene in Medio Oriente, ed inoltre ai progressi delle tecniche di stoccaggio del cibo. (38)

Lo spostamento di sempre maggiori settori della popolazione verso l’agricoltura e l’allevamento, porta ad un aumento della sedentarietà ed anche ad un aumento della disponibilità di cibo dal punto di vista quantitativo, mentre dal punto di vista della scelta porta forse ad una riduzione della diversità alimentare. Certamente rende possibile la vita ordinata secondo  stratificazioni sociali in comunità stabili. (39)

L’aumento delle calorie consumate può aver portato ad una iniziale minor morbilità, ma anche ad un aumento della fertilità e della densità abitativa, con conseguente aumento dei rifiuti, concentrati in zone specifiche, delle latrine, e degli allevamenti, tre fattori favorevoli all’insorgere di nuove malattie e di nuovi vettori di malattie: ratti, mosche, zanzare, topi, zecche. (40)

Gli stessi animali allevati divennero con tempo nuovi vettori di malattie, i maiali portarono ad esempio all’infezione da Ascaris, ed i bovini alla tubercolosi. Le feci accumulate favorirono il propagarsi degli elminti, le acqua sporche alla febbre tifoide.
Inoltre le modificazioni dell’ambiente richieste dall’agricoltura facilitarono il diffondersi di altre malattie per via oro-fecale; le opere di irrigazione e l’utilizzo di tecniche tipiche dell’agricoltura mobile come il debbio nelle foreste favorirono malaria, schistosomiasi e febbre gialla in Egitto, Mesopotamia ed India.

Se il peggioramento della qualità dell’alimentazione (e quindi delle capacità di resistenza dell’organismo) è andata parallela all’aumento delle fonti di infezione, è probabile che in tempi non troppo lunghi si sarà osservata una selezione degli individui più deboli o sotto stress maggiore (quindi un aumento della mortalità infantile), e la costruzione dell’immunità nei soggetti sopravvissuti. Quindi, col tempo, si sarà giunti al punto di equilibrio tra ospite e patogeno, punto al quale la maggior parte degli ospiti sopravvive e passa l’infezione, rendendo possibile la sopravvivenza del patogeno.

Dal punto di vista della struttura sociale e della gestione della salute e della malattia, una società agricola, che prevede un modello produttivo molto più spinto per sostenere la crescita demografica, prevede anche una stratificazione ed una gerarchizzazione, dove alcuni membri del gruppo avranno più potere, più ricchezza e maggior capacità decisionale di altri; la divisione del lavoro avrà portato individui e famiglie a specializzarsi in alcuni campi del sapere, tra i quali per l’appunto la medicina.

E’ probabile che le nuove malattie derivanti dall’aumento della densità e dalla sedentarizzazione abbiano messo in crisi e screditato i vecchi modi di gestire le malattie, i vecchi rimedi, aprendo la possibilità di nuove concettualizzazioni, più sofisticate ed elaborate. Tutto ciò crea un contrasto tra sapere medico popolare (il sapere precedente, che permane come “prima linea” di soccorso per il malato) e il “nuovo” sapere medico, colto ed arcano. La cura è più concentrata sul paziente, gestita agli inizi dal gruppo dei pari o dalla famiglia, passando poi per figure intermedie fino al trattamento da parte degli specialisti. (41)

La stratificazione favorisce quindi un maggior pluralismo di forme di cura ed un maggior scetticismo.
L’aumento del carico di lavoro spinge probabilmente alla ricerca/offerta di rimedi tonici (fisici, psicologici, sessuali). I gruppi che avevano maggiori conoscenze di zone ad elevata biodiversità vegetale avevano probabilmente maggior conoscenza delle piante medicinali, ma questa non era una conoscenza fortemente iniziatica, visto che per tutti era possibile avere esperienza delle piante. E’ probabile che alcune conoscenze fossero più iniziatiche, in particolare quelle legate agli uomini, che, non dovendo lavorare i campi e rimanendo sempre nello stesso luogo, visitavano di più la foresta e passavano ai figli i segreti delle piante, mentre le donne conoscevano molto bene le piante della zona di passaggio dalla foresta al coltivato, e si passavano le conoscenze quando (come succede in molte società) passavano dal loro villaggio a quello dell’uomo che sposavano.

—————————————————————————————-
Note

30. Diamond, op.cit. p.78

31. Le due definizioni sono prese da: Harris DR (2005) “Origins and spread of Agricolture” in G. Price (ed.) The Cultural History of Plants. Routledge, New York pp.13-26

32. cfr. Hillman, G.C. (1996) “Late Pleistocene changes in wild plant-foods available to hunter-gatherers of the northern Fertile Crescent: Possible preludes to cereal cultivation”. In D.R. Harris (ed.) The Origins and Spread of Agriculture and Pastoralism in Eurasia, London: UCL Press and Washington, DC: Smithsonian Institution Press, ma cfr. anche il recente lavoro di Abbo S et al (2010) “Yield stability: an agronomic perspective on the origin of Near Eastern Agriculture”. Vegetation History and Archaeobotany; DOI 10.1007/ s00334-009-0233-7, dove si mette in dubbio l’importanza dei cambiamenti climatici per lo sviluppo dell’agricoltura. In effetti gli autori sostengono che, al contrario, è la stabilità climatica il fattore necessario per una agricoltura sostenibile e per l’introduzione di nuove coltivazioni. Recenti studi sul DNA mitocondriale sembrano dare un colpo molto serio alla teoria Anatolica, dato che sembra da questi dati che i primi contadini europei non siano legati strettamente ai cacciatori-raccoglitori, nè ai primi agricoltori medio orientali (Renfrew C. (2010) Archaeogenetics — towards a ‘New Synthesis’? Curr Biol 20: R162-R165)

33. Alcuni autori riclassificano i due farri in maniera differente, rispettivamente come Triticum turgidum subsp. dicoccoides (Korn. ex Asch. & Graebn.) Thell. e Triticum monococcum L. subsp. aegilopoides (Link) Thell.

34. Robin G. Allaby, Dorian Q. Fuller, Terence A. Brown (2008) “The genetic expectations of a protracted model for the origins of domesticated crops” PNAS, 105 (37): 13982–13986

35. Nel tardo periodo di Ubaid e di Uruk (IV millennio a.C.) i sumeri avevano quasi il monopolio del grano ma a causa di eccessi e di errori di irrigazione e della progressiva salinizzazione del terreno il grano crebbe sempre meno facilmente e la specie più tollerante del sale, l’orzo, arrivò a predominare.
Per queste ragioni nel 3000 a.C. si avviano vie di scambio tra le zone dell’altipiano iraniano e la Mesopotamia, e poi tra la Mesopotamia del Sud e Valle dell’Indo.

36. Piperno RD, Ranere AJ, Holst I, Iriarte J, and Dickau R (2009) “Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Cenral Balsas River Valley, Mexico” PNAS 106 (13): 5019-5024

37. Johns 1990 op. cit.; Diamond 1997 op. cit.; Harris DR (2005) “Origins and spread of Agricolture” in G. Price (ed.) The Cultural History of Plants. Routledge, New York

38. Hillman, G.C. (2000) “The plant food economy of Abu Hureyra 1: the Epipalaeolithic”. In A.M.T. Moore, G.C. Hillman, and A.J. Legge (eds.) Village on the Euphrates: From Foraging to Farming at Abu Hureyra, New York: Oxford University Press, 327-399.  Hillman, G.C., Hedges, R., Moore, A., Colledge S., and Pettitt, P. (2001) “New evidence for late glacial cereal cultivation at Abu Hureyra on the Euphrates”. The Holocene 11, 383-393.

39. Diamond 1997 op. cit. Emboden WA Jr. (1995) “Art and artifact as ethnobotanical tools in the ancient near east with emphasis on psychoactive plants”. In R. E. Schultes, Siri Von Reis (ed.) Ethnobotany: Evolution of a discipline, New York: Chapman & Hall: pp. 93-107

40. cfr. Kiple 1993 op. cit. L’aumento delle calorie disponibili potrebbe aver portato ad un aumento della percentuale di adipe, che nelle donne, potrebbe avere portato ad un aumento della fertilità.

41. Kleinmann, A. Patients and healers in the context of culture.  Berkeley; University of California Press, 1980

Uomo e piante 4/dimoltialtri

Il rapporto con i patogeni
Se l’Africa è il luogo di origine e della prima evoluzione del genere Homo, per comprendere i rapporti coevolutivi tra Homo e patogeni è necessario approfondire l’argomento della distribuzione dei patogeni nel mondo, per capire se le malattie infettive siano distribuite a random o se esistano delle differenze  caratterizzanti il continente africano.

Dato che l’indagine archeologica è impossibile per l’assenza di resti analizzabili, una conferma diretta sulla distribuzione dei patogeni nel periodo di interesse non è possibile, ma secondo Guegan e collaboratori (23)  le inferenze dalle attuali distribuzioni permettono di dire che:

  1. la diversità delle specie patogene per l’uomo era ed è massima nelle zone tropicali e subtropicali.
  2. le specie di patogeni endemiche nelle zone temperate del mondo sono molto poche, mentre nelle zone tropicali sono presenti sia i patogeni endemici (patogeni, spesso zoonosi,  con stadi esterni legati a vettori o a riserve, come gli elminti) sia quelli a distribuzione globale (di solito virus, batteri e funghi trasmessi direttamente, adattati alle popolazioni umane, con ciclo vitale interno all’uomo e quindi poco sensibili all’ambiente).

Ciò significa che le diverse popolazioni umane non sono state esposte allo stesso carico di malattie infettive, e che le popolazioni africane hanno avuto (e hanno) a che fare con una maggior diversità di patogeni.

I Cro Magnon erano probabilmente organizzati in piccoli gruppi egalitari di cacciatori e raccoglitori e, a differenza di H. neanderthalensis, avevano una dieta dominata dagli alimenti di origine vegetale. (24)

Come tutti gli ominidi, essi convivevano con parassiti con i quali si erano evoluti in Africa (dai macroparassiti come Enterobius, Ancylostoma, Uncinaria, Necator, ai microparassiti come Plasmodium responsabile della malaria e Flavivirus della febbre gialla) ed anche con parassiti di altri animali, ad esempio il Trypanosoma brucei rhodesiense della tripanosomiasi africana, il Leptospira della leptospirosi, la Brucella della brucellosi, la Salmonella della salmonellosi, lo Schistosoma della schistosomiasi, la Amoeba della dissenteria amebica, il Treponema pertenue, proveniente da animali o carne decomposta, che causa la framboesia, la Borrelia che porta la borreliosi, e la Yersinia pestis.

E’ probabile che, se non esenti da malattie, i primi Homo sapiens fossero comunque poco colpiti da malattie infettive, e soffrissero prevalentemente di ferite, traumi e di infezioni croniche a bassa intensità della pelle e del tratto gastrointestinale, le uniche che potevano mantenersi attive in popolazioni numericamente esigue, o perché duravano a lungo (dissenteria amebica) o perché potevano alternarsi tra ospiti diversi (schistosomiasi).(25)

Certamente non soffrivano di infezioni acute come morbillo o varicella, infezioni virali che o uccidono o rendono immuni e necessitano quindi di grandi numeri per mantenersi attive. Inoltre la maggior parte dei gruppi umani erano sempre in movimento, quindi non esistevano quelle riserve di focolai infettivi tipici degli insediamenti stabili che sono le latrine, la spazzatura e gli allevamenti.

Un caso di studio: la malaria
L’analisi delle frequenze di alcune malattie a base genetica ha dato indizi molto importanti proprio sul fondamentale ruolo selettivo/evolutivo delle malattie infettive. L’esempio più studiato è certamente quello del rapporto tra disordini dell’emoglobina e la malaria, che mostra come nonostante i fattori stocastici impliciti nella trasmissione della malaria, il rischio di infezione dipenda in buona parte da fattori predeterminati a livello genetico. (26)

L’anemia falciforme risulta da una modificazione della subunità di tipo beta dell’emoglobina con formazione della emoglobina S (HbS) invece che la forma normale A (HbA). Negli omozigoti HbSS la HbS, quando viene ossidata, tende a precipitare e ad alterare la forma degli eritrociti, che divengono rigidi e distorti a falce (drepanociti), fragili, proni ad emolisi. I soggetti soffrono una elevata morbosità e mortalità, hanno aspettative di vita basse e raramente si riproducono.

L’allele modificato dovrebbe quindi essere estremamente raro o già scomparso, mentre si osservano frequenze molto elevate (più del 20%) nella fascia dell’Africa tropicale e frequenze meno elevate ma ancora superiori a quanto ci si aspetterebbe in Grecia, Turchia, India, Sicilia, ecc., mentre l’allele è assente in Nord America, Nord Europa, Australia.

Questa persistenza si potrebbe spiegare con una frequenza molto elevata di mutazione ricorrente, ma è più probabile che l’eterozigote HbAS abbia un vantaggio selettivo sugli individui “sani” HbAA. Questo vantaggio selettivo risulta evidente sovrapponendo le aree di persistenza dell’allele con quelle della distribuzione della malaria, aree che combaciano molto bene. Ed infatti si è scoperto che gli eterozigoti hanno ridotta prevalenza ed intensità della malaria rispetto agli omozigoti HbAA.

I parassiti della malaria (Plasmodium spp.) hanno più difficoltà a sopravvivere all’interno degli eritrociti anemici, probabilmente perché la loro azione pro-ossidante danneggia più facilmente l’eritrocita, causa una sua morte precoce e un rilascio di forme parassitarie immature che non sopravvivono all’esterno della cellula.

La stessa ipotesi di un vantaggio selettivo è stata avanzata anche per altre modificazioni patologiche dell’emoglobina, come alfa- e beta-talassemie, o per disfunzioni eritrocitarie, come ad esempio per il favismo, ovvero la deficienza dell’enzima Glucosio-6-fosfato deidrogenasi (G6PD). La deficienza di questo enzima chiave causa una reazione avversa a farmaci pro-ossidanti (l’emoglobina si ossida molto più facilmente, precipita e causa lisi dell’eritrocita) che si manifesta come una eccessiva distruzione di eritrociti. La ridotta capacità della cellula nel resistere allo stress ossidativo starebbe però alla base dell’effetto protettivo dalla mortalità da Plasmodium falciparum.

Come ha ben esposto Nina Etkin in un suo recente articolo la coscienza di questi legami evolutivi non è interessante solo dal punto di vista accademico, ma può funzionare come sapere applicato.(27) Comparare questi adattamenti biologici alla malaria agli adattamenti culturali, ad esempio la scelta delle piante medicinali o i comportamenti alimentari, ci può aiutare a spiegare perché tali adattamenti si siano presentati, e ci può aiutare a usare il dato etnobotanico come filtro per la ricerca di nuove piante utili.

L’autrice usa la pianta al momento più interessante per il trattamento della malaria, la Artemisia annua e la molecola artemisinina, mostrando come l’azione antimalarica derivi dal potenziale proossidante della molecola, che agisce sull’eritrocita e sul plasmodio, mimando in questo l’effetto di sensibilizzazione all’ossidazione delle anemie emolitiche.

L’autrice indica anche altri  comportamenti come probabili adattamenti culturali di fronte alla malaria, come la tradizione est africana di fermentare la birra in recipienti ferrosi. La birra così ottenuta sarebbe carica di ferro, un fattore chiave nei processi ossidativi che faciliterebbe la lesione ossidativa agli eritrociti.

L’espansione

Con l’espandersi verso le nuove aree temperate, H. erectus e le altre specie di Homo si lasciarono indietro (in Africa) tutte le malattie con vettori o ospiti intermediari speciali e specifici del continente (tripanosoma, arborvirus, ecc.), mentre il clima più mite riduceva il carico di patogeni; se a queste differenze sommiamo il disgelo seguito all’ultima glaciazione (10.000 anni fa), si spiega forse la crescita demografica e la conseguente aumentata necessità di cibo che spinse verso la domesticazione degli animali e verso l’agricoltura. (28)

In questo quadro assume particolare rilevanza sanitaria il fatto che queste popolazioni assumessero sempre una grande varietà di cibi vegetali, ricchi di una grande diversità di nutrienti e di tossine vegetali, responsabili, come vedremo più avanti, della riduzione delle infezioni enteriche. (29)

Sempre questo quadro suggerisce che fosse ancora assente la figura dell’esperto guaritore, dell’esperto di piante medicinali e di riti, e che la gestione della salute ed il trattamento della malattia (vista ancora come un evento che si originava all’esterno del corpo, biologico e sociale) fosse collettivo e non segreto, folklorico e comunque comprendente un complesso di terapie razionali, sia chirurgiche sia erboristiche, usate per curare malattie semplici (diarrea, costipazione, ferite, ecc.) più un uso di tonici primaverili o altro che forse apportavano nutrienti. (30)

Come si vedrà più avanti, la “scoperta” dell’agricoltura, con la possibilità di discriminare tra piante spontanee e piante coltivate, piante alimentari e piante medicinali, permette la individuazione di soggetti esperti e di conoscenze segrete, limitate agli esperti, esoteriche.

La conquista del mondo
I movimenti migratori che hanno portato H. sapiens a conquistare il mondo sono conosciuti nelle loro linee più generali.

Nell’arco temporale del “grande balzo in avanti”, dopo la conquista dell’Eurasia meridionale, H. sapiens arriva in Australia e Nuova Guinea (unite al tempo a causa della glaciazione) tra i 30.000 e i 40.000 anni fa (iniziando l’estinzione della megafauna australasiana), con quello che è stato probabilmente il primo utilizzo di imbarcazioni per superare grandi distanze (intorno agli 80 km). Circa 20.000 anni fa l’uomo conquista le terre fredde della Siberia, probabilmente contribuendo all’estinzione del Mammut e del rinoceronte lanoso. E’ probabile che solo le maggiori capacità di H. sapiens rispetto ad H. erectus e H. neanderthalensis abbiano permesso questo passaggio.

L’ultima grande massa continentale ad essere conquistata è stata l’America. Approfittando di favorevoli condizioni climatiche, è probabile che intorno a 12-000 anni fa i primi coloni siano arrivati in Alaska, e che nel giro di mille anni queste popolazioni siano arrivate in Patagonia. La Groenlandia dovrà aspettare il 2000 a.C. (31)

Se la parte principale della dieta di Homo sapiens arcaico era costituita dai vegetali (lo indicherebbero le strie dei denti comparabili a quelle dei vegetariani contemporanei, i cestini per la raccolta di vegetali nel tardo Paleolitico, i fitoliti indicanti uso di cereali, il rapporto Stronzio/Calcio delle ossa che si innalza nel Mesolitico), con il passare del tempo egli diviene sempre più attivo nel procacciarsi la carne, passando da scavenger passivo a scavenger attivo e cacciatore, e gli strumenti, specie quelli utilizzati per la macellazione delle carcasse animali, si fanno più sofisticati a mano a mano che cresce la competizione con i grossi carnivori.

Certamente l’utilizzo più massiccio della carne come alimento energetico facilita l’apporto di principi nutritivi atti a sostenere l’encefalizzazione e quindi l’ominazione.

A questo periodo risalgono altri importanti ritrovamenti di indizi sull’uso delle piante da parte dell’uomo. I resti trovati nei siti Neolitici degli abitanti dei laghi dell’Europa centrale indicano coltivazione o raccolta di ca. 200 specie diverse di piante (ad es. papavero da oppio, Papaverum somniferum L. — Papaveraceae).

Il maggior consumo di cibi ad elevata densità e d’origine animale ha probabilmente migliorato lo status nutrizionale di Homo sapiens ma ha anche cambiato il suo rapporto con foglie e composti allelopatici, ed è probabile che questi cambiamenti abbiano avuto un effetto sull’equilibrio tra status nutritivo, organismi patogeni e proprietà positive e negative dei composti attivi. Il cambiamento di dieta, infatti, potrebbe aver reso da un lato meno necessario l’utilizzo di foglie (energeticamente povere) e dall’altro aver reso possibile un loro consumo più elevato in caso di necessità (perché un organismo ben nutrito detossifica più facilmente gli xenobiotici, ovvero i composti chimici farmacologicamente attivi esogeni introdotti con la dieta).

Forse è qui, con lo sganciamento parziale dell’uomo dalla necessità di ingerire piante tossiche, e con l’inizio del lungo processo che avrebbe portato alla domesticazione di alcune piante, che si ha per la prima volta la possibilità di parlare di medicina e non solo di comportamenti di automedicazione. Perché il disaccoppiamento della frazione nutritiva da quella tossica permette di individuare due soggetti fino a questo momento fortemente sovrapposti: le piante alimentari e le piante medicinali, ed è possibile ingerire, coscientemente, composti allelopatici a scopo curativo.

——————————

Note

23. Guegan J-F, Prugnolle F, Thomas F (2008) “Global spatial patterns of infectuous diseases and human evolution”. In S.C. Stearns & J.C. Koella (eds.) Evolution in Health and Disease. Second Edition. Oxford University Press

24. Kiple K.F. “The ecology of disease”. in W.F. Bynum e R. Porter 1993 op. cit. pp. 357-381. Anche se la presenza di asce e coltelli di pietra e di segni da taglio sui denti indicano un utilizzo di carne, le strie sui denti e la loro qualità estremamente simile a quelle dei vegetariani odierni indica una dieta prevalentemente vegetariana (Consiglio e Siani 2003 op. cit. )

25. In mancanza di dati archeologici, la fonte più importante di inferenze sul passato sono le condizioni di vita odierne delle ultime popolazioni di cacciatori raccoglitori; essi sono ben nutriti rispetto ai vicini coltivatori, e di solito in salute (Vickers W.T. “The health significance of wild plants for the Siona and Secoya”. In Etkin, N.L. (Ed.), 1994 op. cit. pp. 143-165), ed i loro problemi parassitari ed infettivi sono probabilmente in equilibrio con la popolazione (Kiple 1993 op. cit. ).

26. Ma, come hanno mostrato Mackinnon MJ, Mwangi TW, Snow RW, Marsh K, Williams TN (2005) “Heritability of malaria in Africa”. PLoS Med 2(12): e340,  i fattori genetici dell’ospite sembrano contare per il 25-33% della variabilità totale nella suscettibilità, e solo una piccola percentuale di questa variazione sembra legata ai geni più conosciuti e studiati, rafforzando l’ipotesi che la suscettibilità alla malaria sia sotto il controllo di molti geni differenti, e di fattori non genetici sempre predeterminati, che si articolano in maniera complessa con i fattori genetici.

27. Etkin, N (2003) “The co-evolution of people, plants, and parasites: biological and cultural adaptations to malaria”. Proceedings of the Nutrition Society, 62:311-317

28. Diamond 1997 op. cit.

29.  Johns 1990 op. cit.;  Vickers 1994 op. cit. ; Kiple 1993 op. cit.

30. Anche in questo caso ci si rifa ai agli studi effettuati sulle ultime popolazioni di cacciatori raccoglitori, che utilizzano rimedi per molti problemi: ferite, fratture, slogature, dolore, problemi di pelle, febbre, raffreddore, tosse, diarrea, mal di testa, ecc. Le piante venivano e vengono consumate come infusi, forse ancora prima come pianta fresca o secca ingerita tal quale.

31. Diamond 1997 op. cit.

Uomo e piante 3/dimoltialtri

Rieccoci qui alla serie Uomo e piante. Dopo un post introduttivo ed uno che esaminava in breve l’evoluzione delle piante dal punto di vista dei loro composti di difesa, nella terza installazione iniziamo a parlare dell’evoluzione umana in relazione in particolare alla dieta.

I primi passi dell’uomo
E’ fuor di dubbio che l’origine dell’uomo sia da ricercarsi in Africa, e che dall’Africa esso abbia poi colonizzato il resto del mondo. (5)

I dati genetici e paleontologici indicano infatti che l’antenato comune a uomini e scimpanzè viveva probabilmente nelle foreste pluviali dell’Africa centrale nutrendosi principalmente di frutta, più raramente di altre parti vegetali ed occasionalmente di carne.

Le prime specie di primati della tribù Hominini comparvero quasi sicuramente in Tanzania ed in Etiopia intorno a 6-7 milioni di anni fa, (6) e le varie specie di australopitecine (divise in “robuste” e “gracili”) si diversificarono intorno ai 4 milioni di anni fa.

Alcune di queste specie (almeno due  delle “robuste”), vissero fino ad essere contemporanee ad Homo habilis, sulla costa orientale africana dall’Etiopia al Sud Africa, in habitat sia di foresta che di savana. La loro alimentazione fu prevalentemente vegetariana, probabilmente dominata dalle foglie, per almeno tre milioni di anni, finché non si estinsero circa un milione di anni fa.(7)

Tra i 3 ed i 2 milioni di anni fa un importante cambiamento climatico e vegetazionale portò ad una progressiva estensione dei territori a savana a scapito della copertura forestale, ad una riduzione nella disponibilità dei frutti molli tipici delle foreste e ad un aumento di legumi e frutti duri, di piante erbacee e della possibilità da parte degli Ominidi di cacciare grandi erbivori.

E’ in questo contesto che si situa la comparsa del primo rappresentante del genere umano, Homo habilis, bipede abile costruttore di utensili ma dalla scatola cranica ancora piccola. Sempre in questo lasso di tempo si situa la iniziale diversificazione di Homo, che corrisponde anche al momento di maggior diversità nel genere, per il momento limitato all’Africa. E’ stato ipotizzato, infatti, che in quel periodo abbiano convissuto in Africa fino a sei specie di Ominidi, comprese tre del genere Homo (H. habilis, H. rudolfensis e H. ergaster).(8)

Il cambiamento climatico e la maggior disponibilità di erbivori di grande taglia determinò probabilmente la dieta maggiormente basata sulla carne di H. abilis (fino al 30%), che però è improbabile fosse un cacciatore attivo, ma piuttosto uno spazzino passivo, dipendente per il suo sostentamento dall’attività dei grandi carnivori come le tigri dai denti a sciabola.(9)

I dati archeologici sulla dieta degli ominidi mostrerebbero che fin da subito Homo divenne il maggior competitore delle australopitecine, a causa della sovrapposizione delle risorse alimentari dei due gruppi, specialmente per quanto riguarda le specie vegetali utilizzate. E’ possibile che in caso di difficoltà nel reperire carne gli Homo si volgessero verso cibi di riserva vegetali, entrando in forte competizione con le australopitecine, le quali avrebbero dovuto a loro volta fare affidamento su altre fonti di cibo, facili da reperire o difficili per Homo da sfruttare.

La scomparsa delle forme di Homo di statura ridotta circa 1.6 milioni di anni fa, e l’estinzione delle forme robuste delle australopitecine (dopo l’aumento progressivo delle dimensioni dei loro molari) indicherebbero che queste strategie di utilizzo degli alimenti di riserva non potevano essere mantenute facilmente di fronte ad una aumentata efficacia come cacciatori degli Homo di grandi dimensioni. (10)

E’ possibile ipotizzare che fin da questo periodo le piante ed i metaboliti contenuti in esse abbiano giocato un ruolo nell’evoluzione degli Ominidi. Secondo alcuni ricercatori il cambiamento climatico avrebbe forzato i primati, ed in particolare le femmine, ad adattarsi ad un ambiente caratterizzato da momenti di abbondanza e da altri di relativa carestia, e da un aumentato carico di metaboliti secondari.

Parte dell’adattamento potrebbe essere stato la maggior facilità di stoccare il surplus di energia sotto forma di depositi adiposi da sfruttare nei momenti di bisogno, una caratteristica che distingue nettamente gli esseri umani dagli altri primati, a parte l’orangutang, il quale vive anch’esso passaggi drammatici da abbondanza a carestia nelle foreste del Borneo.

Un altro adattamento fu forse la ricerca di nuove fonti di cibo meno tossiche e più diversificate. Secondo alcuni autori questi cambiamenti potrebbero aver segnato uno dei passaggi critici nell’evoluzione degli Homo.(11) Nuove strategie alimentari che permettessero un flusso di nutrienti più continuo durante l’anno, e l’aumentata capacità di stoccaggio potrebbero essere stati critici per l’evoluzione del cervello per almeno due ragioni strettamente collegate: la prima è che la strategia di ricerca allargata a nuovi habitat e verso molteplici fonti di cibo necessita di un cervello più plastico, potente e quindi più grande di quello di un animale che usi poche fonti di cibo; la seconda che un cervello più grande è metabolicamente molto costoso da produrre nella gestazione e da mantenere  durante la vita extrauterina, ed ha bisogno di fonti stabili di energia.(12)

E’ possibile che l’abilità di stoccare energia in maniera più efficiente, nata per rispondere ai momenti di carestia, abbia funzionato, una volta che lo sfruttamento di nuovi habitat avesse permesso un flusso di nutrienti stabile nel tempo, da esaptazione (o preadattamento) per l’abilità delle femmine di gestire la maggior crescita cerebrale del feto durante la gravidanza rispetto ad altri mammiferi, condizione che è stata definita come uno stato di “carestia accelerata” per la donna. (13)

Secondo le teorie delle migrazioni umane che hanno più supporto empirico, (14) le popolazioni originali di H. ergaster (H. erectus africanus – la specie che seguì a Homo habilis), dalle loro probabili zone di origine nella Rift Valley, si sarebbero espanse in una prima ondata prima, tra 1,5 e 1.2 milioni di anni fa, nel continente africano verso sud (Pigmei e Khoisan), verso ovest (odierni Niger e Congo) e nord, passando poi in Asia attraverso la penisola del Sinai circa 1.2 milioni di anni fa e da lì in Europa 500.000 anni fa, dove si sarebbero insediate ed evolute fino a dare origine ad una nuova specie, Homo neanderthalensis, che aveva con tutta probabilità una dieta del tutto simile a Homo erectus, ovvero fortemente carnea, in particolare a base di erbivori.(15)

Mentre in Europa faceva la sua comparsa il Neandertal, in Africa, da una piccola popolazione geograficamente separata dallo stock di H. erectus africano (H. ergaster), si sarebbe originato, meno di 200.000 anni fa, il primo nucleo di Homo sapiens (H. sapiens arcaico), che avrebbe poi iniziato a migrare verso le zone già occupate da H. erectus e H. neanderthalensis ca. 100.000 anni fa.(16)

E’ quindi ipotizzabile che tra i 50 ed i 35.000 anni fa tre specie di Homo convivessero sulla terra: H. neanderthalensis come discendente di Homo erectus in Europa, Homo erectus in Asia, e Homo sapiens nel suo continuo movimento espansionistico dall’Africa al resto del globo. Secondo la stessa logica è ipotizzabile che H. sapiens e H. neanderthalensis abbiano condiviso i territori in Europa, e forse che si siano mescolati.(17)

La dieta

Un passaggio decisivo per l’evoluzione della dieta degli ominidi fu certamente l’utilizzo del fuoco per la cottura del cibo, che con tutta probabilità appare come attività intorno a 400.000 anni fa. La cottura presentava indubbiamente dei grandi vantaggi per gli ominidi: essa infatti trasforma alcuni cibi prima indigeribili in cibi commestibili; facilita l’utilizzo dell’energia contenuta nei cibi riducendo il dispendio energetico digestivo; riduce il consumo dei denti. Inoltre un recente studio mostra che con tutta probabilità gli ominidi avevano già sviluppato una preferenza per i cibi cotti, preferenza forse spiegabile con la somiglianza tra i segnali molecolari provenienti dal cibo cotto e i segnali molecolari che aiutano l’ominide a distinguere tra cibi “buoni” e cibi “cattivi”.(18)

L’utilizzo del fuoco potrebbe aver facilitato i raccoglitori africani del Pleistocene nello sfruttamento di radici, tuberi e noci, che secondo la received view erano le risorse vegetali più importanti di Homo intorno a 100.000 anni fa, anche se l’ipotesi che la raccolta dei cereali in Africa fosse tecnicamente troppo difficile e quindi irrilevante rispetto alla raccolta delle radici, viene messa in discussione dai recenti dati provenienti dagli scavi nella caverna di Ngalue (odierno Monzambico).
Gli scavi mostrano una presenza importante di grani di amido di sorgo ed altre erbacee, suggerendo che almeno 105.000 anni fa Homo sapiens raccogliesse i semi delle graminacee per la sua sussistenza. (19)  Questa conclusione sembrerebbe supportata dallo studio sugli strumenti del sito di Kanjera in Kenya, che mostrerebbero segni inequivocabili di utilizzo per la processazione di piante erbacee (oltre che per l’apertura di noci, la pulitura di radici e il disossamento di carcasse di animali).(20)

Si situa in questo contesto temporale la prima testimonianza a noi pervenuta dell’utilizzo di piante medicinali da parte dell’uomo (di Neandertal, in questo caso). In una tomba risalente al 60.000 a.C., presso il sito archeologico Shanidar IV (in Iraq), sono stati ritrovati pollini raggruppati in maniera tale da suggerire che le piante dalle quali provenivano formassero un tappeto per il corpo del deceduto. Nonostante sia impossibile essere certi che fossero piante usate a scopo medicinale, o comunque importanti per la cultura di Shanidar IV, la maggior parte degli autori concorda con questa ipotesi. Le piante sono state identificate come appartenenti ai generi Achillea sp. [Asteraceae], Althaea sp. [Malvaceae], Muscari sp. [Liliaceae/Hyacinthaceae], Senecio sp. [Asteraceae], e alle specie Centaurea solstitialis L. [Asteraceae] ed Ephedra altissima [Ephedraceae], piante tuttora importanti nella fitoterapia irachena e presenti in altre tradizioni mediche.(21)

Muscari armeniacum

Centaurea sostitialis

Ephedra altissima

Il grande balzo

Proprio la presenza contemporanea dell’uomo di Neandertal e dei primi esemplari di Homo sapiens (Cro-Magnon) tra i 50.000 e i 35.00 anni fa in Europa coincise con due grandi eventi, uno di tipo culturale ed uno di tipo climatico.  Circa 50.000 anni fa si ha testimonianza, in Asia orientale prima e di seguito nel Vicino Oriente ed in Europa sud orientale, di un periodo di grande progresso tecnologico e comportamentale (la cosiddetta “rivoluzione umana” o “il grande balzo in avanti”).

Cambiamenti paragonabili sono avvenuti all’incirca nel periodo dell’arrivo degli Homo moderni in Europa, 40.000 anni fa, testimoniati tra e altre cose dai graffiti della grotta di Lascaux, nell’odierna Francia. In effetti in questo periodo (Paleolitico superiore) si osserva un avanzamento nella complessità tecnologica, artistica e rituale molto maggiore di quanto osservato nei periodi precedenti, come ad esempio l’uso di strumenti a lama specializzati, l’apparire dell’arte, del simbolismo, la comparsa di siti di sepoltura umana accompagnati da ornamenti complessi in osso, corno, conchiglie o oggetti d’avorio.(22)

Nello stesso periodo ci fu l’inizio delle grandi instabilità e fluttuazioni del clima dell’era glaciale, con il passaggio da climi temperati a climi estremamente rigidi e viceversa, e questi mutamenti continuarono a verificarsi alternativamente a distanza di poche migliaia di anni. In Europa questi cambiamento erano legati all’inversione della circolazione oceanica nel Nord Atlantico e potevano congelare e scongelare l’Atlantico in meno di una decade. Quindi è del tutto possibile che nell’arco della vita di un Neandertal e di un Cro-Magnon, il clima e l’ambiente animale e vegetale a cui erano abituati fosse spazzato via e sostituito da climi, specie animali e vegetali del tutto nuovi. Quando le colonie di Cro-Magnon iniziarono a convivere con i Neandertaliani, il cambiamento climatico potrebbe aver favorito i primi, che forse avevano dei vantaggi quali una rete sociale più ampia e solida, abiti e ripari più efficienti, e alla fine ciò potrebbe aver portato alla scomparsa dei Neandertal.

—————————————————————————–
Note

1. Tattersall I., Schwartz J. Extinct humans. Boulder CO; Westview Press, 2000; Johanson D., Edgar B. From Lucy to language. NY; Simon & Schuster, 1996.

2. Crowe, I (2005) “The Hunter-Gatherers”, in G. Price (ed.) The Cultural History of Plants. Routledge, New York, pp. 3-11

3. Crowe 2005 op. cit.

4. Secondo Tutin (Tutin C (1992) “Foraging profiles of sympatric lowland gorillas and chimpanzees on the Lopé game reserve, Gabon”. In E.M. Widdowson and A. Whiten (eds.) Foraging Strategies and Natural Diet of Monkeys, Apes and Humans. Oxford, Clarendon Press) è probabile che la frugivoria sia stato il primo stadio di adattamento (anche primati oggi tipicamente foliovori (come i gorilla) sarebbero comunque passati dallo stadio di frugivoria), ed il più plastico. La foliovoria sarebbe infatti in cul-de-sac evolutivo che costringe l’animale a sviluppare una flora batterica gastrica o intestinale per fermentare le fibre delle foglie e renderle assorbibili. Una volta sviluppata tale flora l’animale sarebbe comunque costretto ad alimentarsi in parte con foglie anche in periodi di abbondanza di frutti, solo per mantenere attiva la flora.

5. Diamond, J. Guns, germs, and steel: The fates of human societies. W.W. Norton & Co., 1997; Ed. italiana Armi, acciaio e malattie: breve storia del mondo negli ultimi tredicimila anni. Torino, Einaudi 2000; Dawkins R. Il racconto dell’antenato. La grande storia dell’evoluzione. Mondadori, Milano, 2006; Filler A.G. (2007) “Homeotic evolution in the Mammalia: Diversification of therian axial seriation and the morphogenetic basis of human origins”. PLoS ONE 2(10): e1019. doi:10.1371/journal.pone.0001019

6. I resti di Sahelanthropus tchadensis e poi di Orrorin tugenensis si situano intorno a quell’area temporale, e poco più tardi appaiono i primi resti di Ardipithecus ramidus (5.8 milioni di anni fa) e di Kenyanthropus platyops (3.5 milioni di anni fa).

7. Gli australopitecini, differenziati in molte specie, spesso contemporanee, comprendevano almeno tre di tipo “robusto (Australopithecus aethiopicus – 2.6-2.3 milioni di anni fa; A. robustus – 2-1.5 milioni di anni fa; A. boisei – 2.1-1.1 milioni di anni fa). e tre più “gracili” (A. anamensis (4.2-3.9 milioni di anni fa), A. afariensis (3.9-3.0 milioni di anni fa), A. africanus (3-2 milioni di anni fa). Gli australopitecini robusti (per i quali alcuni autori usano ora il termine Parantrhopus perché ritengono che appartengano ad un clade unico) molto probabilmente non sono diretti antenati dell’uomo moderno, ma appartengono ad un ramo laterale del cespuglio evolutivo. Quelli più “gracili” sono invece probabilmente i nostri progenitori diretti (Gould, S.J. The structure of evolutionary theory. Belknap Press, 2002).  Rispetto agli ominidi che li avevano preceduti gli australopitecini in genere mostravano una dentatura più adatta ai cibi duri, per i quali era necessario passare da funzioni di taglio ed affettatura (tipiche dei cibi morbidi) a schiacciamento e triturazione, e ad una masticazione circolare. I denti erano situati sotto e non davanti al cranio (con riduzione quindi del prognatismo, una riduzione che si è mantenuta sino a noi), canini ridotti e cuspidi arrotondate e basse. D’altro canto secondo alcuni autori la presenza di incisivi piccoli sarebbe più indicativa di foliovorìa che di frugivorìa (Consiglio, C. e Siani V.  Evoluzione e alimentazione: il cammino dell’uomo. Torino: Bollati Boringhieri, 2003). Consiglio e Siani stimano una percentuale dal 2 al 5%), foliovora e/o frugivora. L’ambiente forniva ampie possibilità di alimentarsi con noci (A. africanus usava ciottoli per romperle), bacche e legumi della savana, e foglie e frutti carnosi reperibili nella foresta. Più ambigui i dati sui robusti. Gli studi sulla chimica delle ossa effettuati sui fossili sono compatibili sia con una dieta prevalentemente foliovora sia con una ricca in radici e carne. La dentatura indica che erano più adatti dei gracili a mangiare cibi duri (sia che ne mangiassero maggiori quantità, sia che il cibo fosse più duro). Secondo Consiglio e Siani 2003 op. cit.  A. robustus e A. boisei potevano usare frutti di alberi della savana come Parinari excelsa, P. curattellifolia, Sclerocarya birdea, Ricinodendron rataneeni.  Da questi dati si presume una dieta prevalentemente vegetariana, foliovora e adatta a semi duri tipici delle piante della savana.

8. Gould 2002 op. cit.

9. La carnivoria sembrerebbe comprovata da vari dati, come la riduzione dello smalto dei denti, i cumuli di ossa ritrovate nei siti abitativi, i segni di arnesi da taglio su denti e sulle ossa, e le tracce indicative di alimentazione a base di pesce. E’ ipotizzabile che si fosse creata una nuova nicchia ecologica per H. abilis come spazzino delle carcasse lasciate dai carnivori meno specializzati, come la tigre dai denti a sciabola del Pliocene e Pleistocene. Può darsi che esso fosse principalmente uno spazzino passivo che si nutriva delle ossa e del loro midollo, battendo sul tempo i carnivori specializzati nell’utilizzo delle ossa. Comunque sia, la dieta conteneva carne come componente importante, ma certamente non maggioritaria (si valuta intorno al 30%). Con la scomparsa delle tigri dai denti a sciabola dall’Africa (1.7 milioni di anni fa) H. habilis ha con tutta probabilità dovuto diventare uno spazzino più attivo, che doveva competere con spazzini molto più specializzati ai quali doveva contendere i resti; alcuni autori hanno collegato questo cambiamento di modalità con l’aumento di statura che si nota nel passaggio tra H. habils e H. erectus (i cui fossili africani sono stati chiamati Homo ergaster).

10. cfr. Wood and Lieberman 2001 e Ungar PS, Grine FE, Teaford MF (2008) “Dental Microwear and Diet of the Plio-Pleistocene Hominin Paranthropus boisei“. PLoS ONE 3(4): e2044

11. Mancando, come sempre in questo caso, prove dirette di quando sia accaduto, dobbiamo avvalerci sono di dati indiretti, di inferenze. Uno studio sui lemuri del Madagascar (L. cattia) (Sauther M.L. “Wild plant use by pregnant and lactating ringtailed lemurs, with implications for early hominid foraging”. In N.L. Etkin (Ed.) 1994 op. cit. pp. 240-258). I lemuri sono un tipo di proscimmia sociale diurna che abita la foresta fluviale a mosaico del Madagascar, e l’analisi dei suoi comportamenti alimentari può essere utile per intuire alcuni passaggi cruciali che hanno portato alla divergenza dei primi ominidi. Il risultato degli studi suggerisce che un avanzamento critico che ha differenziato i preominidi dalle altre specie di primati sia stato lo sviluppo di comportamenti volti ad aumentare la possibilità di sfruttamento delle risorse ambientali. Dati i cambiamenti climatici, che hanno causato una modificazione dell’ambiente nella direzione di una bioregione di savana-mosaico, gli ominidi africani per avere successo devono avere imparato a sfruttare nuove nicchie ecologiche. Dato che le femmine incinte o che allattano sono comunque soggette, rispetto ai maschi, a maggiori restrizioni alimentari (devono evitare cibi con eccessive quantità di metaboliti tossici) e ad elevati costi (devono spostarsi di più per ricercare il cibo), è ipotizzabile che da loro sia partita la spinta alla ricerca di nuove nicchie, di nuovo strumenti per avere disponibilità di cibo tutto l’anno.

12.  Johns 1990 op. cit.

13. Ellison P.T. On fertile ground: A natural history of human reproduction. Harvard University Press, Cambridge, USA, 2001, pp. 289-294

14. Il modello della “origine africana recente” o “della sostituzione”. Cfr. White T.D., Asfaw B., DeGusta D., Gilbert H., Richards G.D., Suwa G. et al. (2003) “Pleistocene Homo sapiens from Middle Awash, Ethiopia”. Nature, 423:742-7; Stringer C.B. (2003) “Out of Ethiopia” Nature, 423:692-4; Stringer, C. (2001) “The evolution of modern humans: where are we now?” General Anthropology 7 (2): 1-5

15. I dati sulla riduzione dello smalto e della area masticatoria, i segni di coltello su ossa e denti, la presenza di strumenti da taglio come asce e coltelli di pietra, sono consistenti con un aumento della quantità di carne nella dieta di H. erectus, e che forse fosse passato ad un ruolo di scavenger più attivo (statura più elevata). La carne era quindi probabilmente una componente importante, secondo Consiglio e Siani 2003 op. cit. da situarsi in media intorno al 30% e non più del 50%. La dieta delle popolazioni insediatesi vicino a laghi, mari e corsi d’acqua era anche molto ricca in pesce. Gli scavi presso il sito di Gesher Benot Ya’aqov, sulle rive del paleo-lago Hula nel nord della Valle del Giordano, nel Rift del Mar Morto, risalgono a 790.000 anni fa, e indicano che la popolazione faceva ampio utilizzo di granchi e soprattutto pesce. Gli stessi scavi hanno consentito di verificare quali piante venissero utilizzate ed in parte anche a che scopo. Tra le piante usate a scopo non alimentare troviamo olivo, quercia, Styrax officinalis, mentre tra quelle alimentari figurano le ghiande di quercia (detossificate probabilmente tramite cottura e forse geofagia), i semi della Euryale ferox e soprattutto i frutti della Trapa natans, molto nutrienti grazie alla percentuale di amido in essi contenuta. E’ possibile che fossero consumati anche i frutti della vite selvatica (Vitis sylvestris) e dell’olivo, come anche le foglie della rapa bianca (Beta vulgaris) e del cardo mariano (Silybum marianum) (Alperson-Afil N, Sharon G, Kislev M, Melamed Y, Zohar I, Ashkenazi S, Rabinovich R, Biton R, Werker E, Hartman G, Feibel C, Goren-Inbar N. (2009) “Spatial Organization of Hominin Activities at Gesher Benot Ya’aqov, Israel”. Science 326:1677-1680)

16. Secondo una teoria alternativa, il modello multiregionale (o modello a candelabro), le tre sottopopolazioni di H. erectus migrate in Africa, Asia ed Europa si sarebbero evolute parallelamente ed indipendentemente per dare origine a Homo sapiens in tutta la sua diversità.  Stringer 2003 op. cit. propone una teoria ancora differente, secondo la quale vi sono stati vari eventi di dispersione nell’evoluzione umana negli ultimi due milioni di anni uno, particolarmente importante, sarebbe avvenuto nel Pleistocene Medio di Africa ed Europa, più di 600.000 anni fa, con l’origine e la dispersione di Homo heidelbergensis. Secondo Stringer 2003 op. cit. questa specie vide di seguito un graduale evento di speciazione circa 300.000 anni fa, dando origine a Homo sapiens neanderthalensis (o H. neandertalensis – Neandertal) al nord del Mediterraneo ed a Homo sapiens arcaico al sud, in Africa. Nel frattempo ad est continuava l’evoluzione di Homo erectus, in Cina e Giava. Queste due linee evolutive possono esseresi incontrate in aree di sovrapposizione, come ad esempio in Medio Oriente, circa 100.000 anni fa, ed in Europa 35.000 anni fa.

17. Altri autori ipotizzano modelli misti, nei quali la componente della seconda ondata migratoria si sia ibridata in parte con alcune spp. della prima ondata, come Homo neanderthalensis, cfr. Duarte C., Mauricio J., Pettitt P.B., Souto P., Trinkaus E., van der Plicht H. et al. (1999) “The early upper Paleolithic human skeleton from the Abrigo do Lagar Velho (Portugal) and modern human emergence in Iberna”. Proceedings of the National Academy of Sciences, USA, 96:7604-9.

18. Wobber V, Hare B, Wrangham R. (2008) “Great apes prefer cooked food”. J Hum Evol 55:340-348

19. Mercader J. (2009) “Mozambican grass seed consumption during the Middle Stone Age”. Science 326:1680-1683).
20. Braun DR, Plummer T, Ditchfield P, Ferraro JV, Maina D, Bishop LC, Potts R. (2008) “Oldowan behavior and raw material transport: perspectives from the Kanjera Formation”. J Archaeol Sci 35:2329-2345

21. Lietava, J. 1992 “Medicinal plants in a Middle Paleolithic grave. Shanidar IV” Journal of Ethnopharmacology 35:263-266; Leroi-Gourhan A. (1975) “The flower found with Shaidar IV, a Neandrethal burial in Iraq”. Science. 190:562-564; Solecki R.S. (1975) “Shanidar IV, a Neanderthal flower burial in Northen Iraq”. Science. 190:880-881. Per una opinione contraria sul ruolo delle piante nei riti di sepoltura di Shanidar IV, cfr, Sommer J.D. (1999) “The Shanidar IV ‘flower burial’: a re-evaluation of Neanderthal burial ritual”. Cambridge Archeological Journal 9(1):127-137

22. Diamond 1997 op. cit.

Uomo e piante 2/dimoltialtri

Continua questa serie di post sul rapporto uomo e piante nella storia. Ci eravamo lasciati qui con la promessa di dare un’occhiata più da vicino all’evoluzione delle piante e dei loro metaboliti secondari, e poi all’evoluzione dell’uomo, come preambolo prima di mescolare il tutto nel calderone :-).

Quindi eccoci qui a parlare de…

L’evoluzione delle piante – una breve descrizione
La vita ebbe inizio nelle acque. E fu vita autotrofa, pacifica, a bassa diversità. La nascita dei primi predatori fu la causa iniziale di una esplosione evolutiva che ci ha portato ai giorni nostri.

L’azione predatoria fece da stimolo ad una diversificazione degli autotrofi verso nuove nicchie ecologiche, nuovi modi di vivere negli oceani e nuove strategie per sfuggire ad una minaccia nuova. Questa diversificazione, accompagnata da una diversificazione parallela nei predatori, portò in tempi geologicamente brevi alla saturazione delle nicchie oceaniche, e quindi al tentativo di conquistare un habitat fino ad allora vergine, le terre emerse.

Ma questa conquista richiedeva modificazioni qualitativamente molto diverse rispetto a quelle precedenti: bisognava in qualche modo rendersi autonomi dall’acqua, e l’evoluzione successiva è tutta percorsa da questo tema, l’interiorizzazione dell’oceano. Ma perché questa storia potesse avere inizio erano necessarie certe condizioni di partenza, senza le quali la vita come la conosciamo non sarebbe stata in grado di conquistare i nuovi territori; esse erano: la presenza di stabili ambienti costieri, la formazione del suolo e lo sviluppo di condizioni climatiche ed atmosferiche adatte.

Colonizzazione
Le condizioni per la colonizzazione delle terre emerse da parte delle piante si presentarono nel tardo Ordoviciano, circa 458-443 milioni di anni fa. Ma le prime evidenze fossili del fatto che le piante acquatiche avessero effettivamente sviluppato delle caratteristiche compatibili con un ambiente non acquoso si situano nel primo Siluriano (ca. 470-430 milioni di anni fa). Nei fossili di questo periodo si riscontrano misure per la protezione dal disseccamento, le prime cellule specializzate per il trasporto di acqua e nutrienti, le prime strutture di supporto meccanico e modalità riproduttive che non dipendono principalmente da acqua esterna.

Le inferenze da dati scarsi sono sempre rischiose, ma sembra possibile dire che nel tardo Siluriano – primo Devoniano (ca. 430-400 Ma) dalle alghe verdi emersero le prime piante terrestri, che comprendevano piante non-vascolari (le Briofite), piante vascolari (Tracheofite) e piante con caratteristiche miste. Probabilmente le primissime piante terrestri a comparire furono quelle non vascolari, in particolare le Epatiche, seguite dai muschi, forse i più vicini, evolutivamente, alle piante vascolari.(1)

Ma torniamo alla nostra storia di colonizzazione.

Intorno al primo Devoniano (ca. 408 milioni di anni fa) avviene il primo passaggio evolutivo rivoluzionario: compaiono le prime piante vascolari, ed intorno ai 400 milioni di anni fa compaiono le Eutracheofite, il gruppo tassonomico che comprende quasi il 99% delle piante moderne. Quindi possiamo dire che molte delle caratteristiche della nostra flora si stabilirono 400 milioni di anni addietro.

Queste prime piante terrestri erano felci, licopodi e code cavalline, piccole erbacee alte al massimo un metro, che nel giro di circa 100 milioni di anni avrebbero formato completi ecosistemi forestali con alberi alti fino a 35 metri e simili alle nostre foreste attuali anche se, a vederle ora, queste foreste primordiali ci apparirebbero forse aliene.

Questa profonda e rapida trasformazione non fu dovuta soltanto a modificazioni adattive delle piante rispondenti a fattori biotici, ma anche a grandissimi cambiamenti climatici e tettonici, che compresero lo spostamento del polo Sud, tre glaciazioni e una forte riduzione dell’anidride carbonica dell’atmosfera.

Le piante svilupparono meccanismi sempre più complessi, “inventarono” radici, cortecce, foglie, legno e una vascolatura più efficiente: fino alla comparsa, circa 380 milioni di anni fa, delle prime forme arboree; e già intorno al primo Carbonifero, 350 milioni di anni fa, esistevano foreste di equiseti, licopodi, felci e pro-gimnosperme.

Ma la vera rivoluzione era ancora da venire. Tra i 290 e i 249 milioni di anni fa (Permiano), in corrispondenza di un cambiamento climatico caratterizzato da un graduale e continuo riscaldamento ed inaridimento, ed in seguito alla formazione del supercontinente Pangea (ca. 300 milioni di anni fa), emergono e si diffondono le prime piante a seme (Spermatofite), che sono piante a seme nudo (Gimnosperme). Il nuovo gruppo di piante comprende le Cycadi, le Ginkgoaceae, le Bennetite e le Pteridofite. Il seme fu una rivoluzione radicale rispetto al metodo a spore adottato da tutte le piante fino a quel momento.

Le spore, per potersi incontrare e fondersi fino a formare un nuovo individuo, avevano bisogno di essere rilasciate in un ambiente fortemente acquoso, dove potessero sopravvivere senza disidratarsi e nuotare l’una verso l’altra per potersi incontrare.

Il seme sciolse questa dipendenza. Infatti le “spore” (polline e ovuli) non vengono più rilasciate nell’ambiente: l’ovulo rimane fisso ed il polline, disperso dal vento, lo raggiunge e lo feconda. Dopo la fecondazione, inizia subito a svilupparsi il nuovo individuo, ma lo sviluppo si ferma subito e la protopiantina (l’embrione) rimane racchiusa in un ambiente ricco di acqua e nutrienti e protetta da una capsula a tempo, solida e e pronta ad aprirsi solo quando incontra le condizioni ambientali adatte: il seme.

E’ chiaro che la pianta a seme è avvantaggiata: può colonizzare ambienti nuovi, aridi, o sopravvivere nelle mutate condizioni ambientali che hanno ridotto l’ambiente tropicale (fino ad allora quasi universale sulla terra) a ridotte fasce. Inoltre arriva sul terreno in vantaggio sulle spore: la piantina è già formata, attende solo le condizioni giuste, e parte quindi in posizione di vantaggio.

Non sorprende, quindi, che, dopo la comparsa delle Conifere nel periodo subito successivo (Triassico ca. 248-206 milioni di anni fa), entro la prima parte del Giurassico (206-180 milioni di anni fa) la vegetazione globale sia ormai dominata da piante a seme ed inizi, almeno in parte, ad assomigliare alla copertura forestale attuale.

La terza grande rivoluzione (dopo le piante vascolari e le piante a seme) è quella delle piante a fiore (o piante a seme nascosto – Angiosperme), che avviene 140 milioni di anni fa, molto tardi dal punto di vista evolutivo (300 milioni di anni dopo le Tracheofite e 220 milioni di anni dopo le Spermatofite), probabilmente a partire dalle Bennettitales e/o Gnetales. La comparsa tardiva è però seguita da una rapida diversificazione a partire da 100 milioni di anni fa, diversificazione che in tempi relativamente brevi (nel Terziario tardo, ca. 65 milioni di anni fa) porta ad una dominanza globale delle Angiosperme.

Il gruppo si diversifica rapidamente sia dal punto di vista dei meccanismi riproduttivi che della morfologia: compaiono prima le dicotiledoni erbaceo-arbustive e di seguito le monocotiledoni e le strutture floreali passano da semplici fiori a simmetria radiale con molte componenti a fiori sempre più asimmetrici, con fusione di parti, fino al raggruppamento di singoli fiori in infiorescenze (come nelle Asteraceae).

L’esplosione dei metaboliti secondari – difesa e riproduzione
L’avvento delle Angiosperme porta ad un’altra rivoluzione che ci interessa molto da vicino. L’esplosione di diversità portata da questo nuovo gruppo non è limitata alle forme o alle modalità di riproduzione. Essa si esplicita anche nella produzione di una panoplia di composti chimici di difesa o di comunicazione. Le piante, come organismi sessili, non possono sfruttare le strategie di attacco e difesa dinamiche proprie degli animali: fuggire o attaccare il nemico. Esse hanno da subito dovuto utilizzare delle difese di tipo statico, per dissuadere i predatori dal mangiarle.

Le prime piante emerse usarono difese di tipo meccanico, sfruttando i meccanismi già esistenti per la costruzione delle strutture di supporto e di trasporto; usarono quindi lignina e altre sostanze per rendersi coriacee e difficili da digerire, spine, ecc.

Ma ben presto il fenomeno della coevoluzione, ovvero la rincorsa di risposte e controrisposte palleggiate tra piante e predatori le costrinse ad adottare difese più sofisticate, ovvero a sintetizzare delle tossine che in virtù della loro azione (dalla repellenza alla velenosità) dovevano in teoria servire per allontanare l’erbivoro, per ucciderlo o per fargli ricordare che era meglio non mangiare quella pianta!

Le prime briofite e gimnosperme iniziarono sviluppando tannini condensati, glicosidi cianogenici, ormoni giovanili ed ecdisoni, ma sono appunto le Angiosperme che arrivano alla più grande diversificazione produttiva, anche in risposta all’escalation messa in atto dai predatori che si adattavano alle nuove molecole (Tabella 1).

Circa 60 milioni di anni fa, con le prime angiosperme legnose, vediamo la proliferazione di metaboliti derivati da un percorso metabolico nato per la produzione di metaboliti primari come gli aminoacidi, il percorso dell’acido shikimico: quindi i primi alcaloidi (classe regina dei metaboliti bioattivi, che tanto ha segnato la storia della farmacia) e gli oli essenziali caratterizzati da fenoli e derivati; i derivati del percorso dell’acetato o misti, come isoflavoni, saponine, glicosidi cardiaci; e isotiocianati, glicosidi cianogenici. Il passaggio alle erbacee portò ad uno spostamento dal percorso dell’acido shichimico a quello dell’acido mevalonico, più duttile e con maggiori potenzialità di diversificazione. Gli oli essenziali si arricchirono in composti terpenici, meno tossici per la pianta, nacquero i lattoni mono e sesquiterpenici, gli alcaloidi steroidei, i flavonoli.

Tabella 1

Taxa

Metaboliti secondari

Gimnosperme/ Briofite Tannini condensati e glicosidi cianogenici, ormoni giovanili ed ecdisoni
Angiosperme

legnose

Alcaloidi isochinolinici ed ellagitannini
Amminoacidi non proteici, isoflavoni, glicosidi cianogenici
Saponine e isotiocianati
Glicosidi cardiaci
Angiosperme erbaceae Lattoni monoterpenici e alcaloidi steroidei
Lattoni sesquiterpenici, flavonoli e alcaloidi pirrolizidinici

Seguendo l’asse evolutivo felci-gimnosperme-angiosperme legnose-angiosperme erbacee si notano, in accordo con la teoria coevolutiva, l’aumento e la diversificazione dei deterrenti, la crescente complessità delle strutture chimiche e, di converso l’adattamento a queste strutture dei predatori più importanti: gli insetti. In effetti è avvenuto che tutte le molecole di difesa conosciute (ad esclusione dei tannini condensati) siano state utilizzate a proprio vantaggio da almeno una specie di insetto.

Uno schema molto importante per descrivere questo tipo di adattamento degli insetti alle tossine è quello dei “tre livelli trofici”. I tre livelli trofici sono quello della pianta che produce la tossina, quello dell’insetto che si adatta e gestisce la tossina (usandola a proprio beneficio), e quello dei parassiti dell’insetto sui quali agisce la tossina (uccidendoli o inibendoli) (Tabella 2).

Tabella 2

Specie vegetale Metabolita e tossicità Specie animale
Asclepiadaceae Glucosidi cardiottivi        (calotropina, pirazina) Farfalla monarca (Danaus plexippus)
Senecio spp.(S.      jacobea e S.     vulgaris) A. pirrolizidinici        (retronecina) Arctia caja e Tyria jacobea
Aristolochia sp. Acido aristolochico Battus archidanus
Cucurbita sp. Cucurbitacina D Diabrotoca balteata
Lotus cornicolatus Gl. cianogenici (linamarina) Zygaena trifolii
Brassica oleracea Glucosinolarti (sinigrina) Pieris brassicae
Plantago lanceolata Iridoidi (aucubina) Euphydryas cynthia
Zamia floridina Cicasina Eumaeus atala
Salix sp. Salicina Chrysomela aenicollis
Cytisus scoparius Alc. chinolizidinici Aphis cytisorum
Omphalea Alc. poliidrossilici Urania fulgens

Secondo questa logica, le specie vegetali evolutivamente più avanzate dovrebbero essere più facilitate delle altre nella lotta contro i predatori. In effetti, nelle ombrellifere (Apiaceae) troviamo che, ordinando le molecole di difesa secondo l’asse temporale-evolutivo, esse si distribuiscono anche secondo l’asse di tossicità e di complessità strutturale: prima le idrossicumarine, poi le furocumarine lineari, e quindi le furocumarine angolari. E in effetti le specie contenenti quest’ultimo tipo di molecola si possono difendere da un numero più elevato di predatori.

Possiamo schematizzare l’andamento dei rapporto tra pianta e predatore in questo modo:

Tabella 3: schema coevolutivo pianta-predatore

Sequenza Pianta Animale
1 Sintesi ed accumulo

tossina 1

Evitato da tutte le specie
2 Sintesi continuata Adattamento di poche specie.
3 Sopravvivenza con

predazione limitata

Tossina 1 diventa attraente per le specie adattate
4 Sopravvivenza con

predazione limitata

Aumentano le specie adattate, aumenta la pressione degli erbivori sulle piante
5 Sintesi ed accumulo

tossina 2

Evitato da tutte le specie
6 Sintesi contemporanea

tossina 1 e 2

Adattamento di poche specie, evitata da molte specie

—————————————————————-

Note
1. Willis KJ, McElwain The evolution of plants. Oxford, Oxford University Press, 2000

I frutti aromatici del Siltimur

Una delle conseguenze pratiche della mia seconda puntata in Nepal, nel 2006, nella valle di Nar-Phoo, è stata la raccolta di vari campioni di piante aromatiche con l’intenzione di distillarne l’olio essenziale a Kathmandu. Una delle piante che ci avevano più interessato anche come possibili antivirali era stato il Siltimur, Lindera neesiana, ed in particolare ci interessavano i frutti, usati come rimedio per dolori di stomaco e tosse, e più commestibili delle foglie o della corteccia, e quindi dei possibili candidati per la categoria piante medicinali/alimentari.

Non si riuscì in quella occasione a distillare i frutti della pianta, ma il buon Khilendra aveva effettuato l’anno prima una distillazione di prova, ed aveva conservato bene il campione…

From Nepal 2006

… che io diligentemente portai in Italia per affidarlo alle cure dell’equipe dell’Università Patavina, che già altre volte aveva collaborato a queste mie impromptu missioni.

Dopo un po’ di attesa, ecco finalmente che esce l’articolo relativo ad analisi e attività biologica dell’olio stesso, nel primo numero del 2010 di Fitoterapia, con il titolo “Essential oil of Lindera neesiana fruit: Chemical analysis and its potential use in topical applications” e l’autorship di Comaia, Dall’Acqua, Grillo, Castagliuolo, il buon Khilendra Gurung, e la professoressa Innocenti.

Oltre ad essere una interessante esemplificazione dell’utilità di accoppiare la  tecnica della Gas cromatografia (GC-MS)  alla risonanza magnetica (NMR), l’articolo aggiunge alcuni tasselli importanti relativi alla composizione chimica della frazione aromatica dei frutti della pianta, e sembrerebbe supportare l’idea che i citrali (nerale e geraniale) siano importanti per spiegare l’attività antimicrobica degli OE.

Vediamo allora cosa sappiamo su questa pianta alla luce di questi nuovi dati.

Cosa è?

La Lindera neesiana (Wallich ex Nees) Kurz è un arbusto o piccolo albero deciduo alto fino a 4-5 metri, con foglie picciolate, molto varie in dimensioni, lunghe da 3 a 20cm. e larghe da 1 a 10 cm.,ovali e glabre. I bei fiori gialli sono disposti in ombrelle, e i frutti sono globosi.

From Nepal 2006
From Nepal 2006

La pianta appartiene alle Lauraceae, uno dei più antichi gruppi di angiosperme, parte del primitivo gruppo delle Laurales, che insieme alle Magnoliales fa parte dei Magnoliidi; in letteratura si può trovare anche con i binomiali Tetranthera neesiana Wallich, Aperula neesiana (Wallich ex Nees) Blume e Benzoin neesianum Wall. ex Nees (che è il suo basionimo).

In Nepal centro-orientale la pianta cresce nella zona Himalayana temperata e subtropicale, tra 1800 e 2600 mslm, in aperture lungo le gole profonde nelle foreste.  Fiorisce tra ottobre  e novembre e fruttifica tra marzo e giugno.

Ha vari nomi: in lingua nepalese si chiama per l’appunto 
siltimur; in lingua gurung si chiama katu, gutung, kutung o siltimuri; in lingua Nyeshang phopri
.

Come viene usata?

I vari gruppi etnici nepalesi utilizzano i frutti maturi (neri) e aromatici sia marinati come alimento sia freschi o essiccati come rimedio per mal di stomaco dovuto ad indigestione, come antelmintici e in caso di flatulenza (in Manang – Gyasumdo).

In altre zone vengono masticati in caso di diarrea, mal di denti, nausea, flatulenza, o usati a livello topico per foruncoli e scabbia, malattie della pelle, o internamente per parassiti intestinali; sono considerati un antidoto per animali e uomini in caso di ingestione di piante velenose (Pohle, 1990 Manandhar 2002; Rajbhandari 2001; Joshi 2001).

Le foglie e i ramoscelli sono anch’essi aromatici se vengono spezzati, e vengono usate per malattie della pelle. Sono inoltre una buona fonte di foraggio per bestiame bovino e caprino (Manandhar 2002; Rajbhandari 2001).

La radice e la corteccia, una volta polverizzate, sono usate internamente in caso di dolori (Manandhar 2002; Rajbhandari 2001).

Cosa contiene e come funziona?

L’appartenenza della pianta a Magnoliidi suggerirebbe la presenza di neolignani ad azione antinfiammatoria, comuni a questo gruppo, e la presenza, nell’OE, di derivati del percorso biogenetico dello shikimato (le Lauraceae sono ricche in fenilpropanoidi come eteri fenolici e fenoli, ad attività biologica elevata ma con profilo tossicologico spesso importante).

In effetti frutti, foglie e corteccia di Lindera neesiana contengono olio essenziale, circa l’1% distillabile dai frutti secchi (Gurung, Khilendra: comunicazione personale), l’1.3% dalle foglie fresche e lo 0,5% dai ramoscelli (Singh et al. 1995).

L’OE di foglia, (come previsto dall’appartenenza alle Lauraceae) è caratterizzato da una massiccia percentuale di metil cavicolo (83.76%) e safrolo (11.86%), mentre miristicina  (69.99%) e1,8-cineolo (17.97%) caratterizzano l’OE di ramoscelli (Singh et al. 1995). La presenza di metil cavicolo e safrolo, due molecole a sospetta attività epatotossica ed epatocarcinogenica (sono dei procarcinogeni attivabili dai sistemi de detossificazione epatica) suggerisce che l’OE di foglia sia potenzialmente tossico.

L’articolo di prossima pubblicazione rileva quanto invece sia differente l’OE dei frutti. I principali composti isolati dall’OE sono risultati i citrali (Z-citrale 15.08%, E-citrale 11.89%), l’1,8-cineolo (8.75%), il citronellale (6.72%), e α- e β-pineni (rispettivamente 6.63% e 5.61%). I composti che caratterizzavano gli OE di foglia e ramoscelli sono presenti nel frutto a percentuali molto minori ma non minime: miristicina (4,41%) e metil
eugenolo (ca. 2%). Altri composti identificati a percentuali significative sono: geraniolo, citronellolo,  elemicina, ossido di cariofillene, spatulenolo, nerolo, 6-metil-5-epten-2-one, linalolo ed α-terpineolo.

From Nepal 2006

Infine, i composti presenti in percentuali minime o in tracce sono: α-tujene, camfene, verbenene, mircene, α-fellandrene, p-cimene, cis-ocimene,
 trans-ocimene, 2, 6-dimetil-5-eptanale, γ-terpinene, cis-sabinene, cis-linalolo ossido, trans-linalolo ossido, α-
camfolenale, canfora, terpinen-4-olo, mirtenale, S-(-)-verbenone, trans-carveolo, geranil formiato, β-elemene, trans-cariofillene, β-bisabolene, geranil acetato, e geranil propionato.

Non ci sono molti studi sulle attività biologiche della Lindera neesiana, ma lo studio italiano evidenzia l’attività dell’OE da frutto sullo Staphylococcus aureus (un batterio Gram-positivo) a concentrazione (IC50) di ca. 100 microgrammi per mL, sul lievito Candida albicans a IC50 di ca. 276 microgrammi per mL, ed infine sulla Pseudomonas aeruginosa (un Gram-negativo) a IC50 di 13 570 microgrammi per mL.

Le attività sui patogeni sono state confrontate con quelle di un controllo negativo (DMSO, il solvente usato per solubilizzare gli OE, da solo) e di tre controlli positivi (due antibiotici: ampicillina e  kanamicina, ed un antimicotico, la nistatina). In nessun caso l’OE è risultato efficace quanto le molecole di sintesi, e solo l’attività su Staphylococcus aureus merita a mio parere ulteriori attenzioni.

La bassa efficacia sulla Pseudomonas non dovrebbe stupire, in genere tutti gli olii essenziali hanno attività meno spiccata nei confronti dei G-negativi, a causa della componente lipopolisaccaridica  della loro membrana, che riduce la capacità di penetrazione degli OE, notoriamente lipofili.

(Mi) Stupisce di più la bassa attività su Candida spp., visto il contenuto in citrali mi sarei aspettato di più, comunque sempre meglio dell’azione sui G-. Positiva invece l’assenza di attività citotossica a livelli di attività.

Cosa sarebbe interessante studiare per il futuro? Vista la probabile facilità con la quale i citrali formano legami con i gruppi azotati delle proteine, sarebbe interessante vedere se la loro presenza in un olio essenziale facilita la permanenza dello stesso olio essenziale sul derma, o se miscele di OE a citrali con OE ad elevata volatilità riduce quest’ultima.

Inoltre altrettanto interessante sarebbe vedere se c’è un ruolo per l’utilizzo di questi frutti nell’alimentazione da carestia. Chi lo sa?

Dialoghi etnobotanici due

Riprendiamo il filo di una bella discussione che ha segnato il primo post di questo blog. Il dialogo riprende con Andrea Pieroni, che fino a poco tempo fà era Senior Lecturer presso la Division of Pharmacy Practice/Medical Biosciences Research Focus Group, dell’Università di Bradford, GB, mentre ora è professore onorario di Botanica presso l’Università delle Scienze Gastronomiche di Bra.

Rimane comunque membro della Linnean Society di Londra e della Royal Society of Medicine, Presidente della International Society for Ethnopharmacology, Editor-in-Chief del Journal of Ethnobiology and Ethnomedicine (Editor-in-Chief) e membro del board di Journal of Ethnopharmacology, Journal of Ethnobiology e Food and Foodways.

Silphion: allora, caro Andrea, per riprendere le fila del discorso, dato che sono un tipo cocciuto ritornerei su di un argomento che a te pareva mal posto, cioè traditional knowledge (TK) vs. Evidence Based Medicine (EBM) [un argomento che fa parte di una più ampia discussione che presenterò in futuro intervistando Sue Evans, una erbalista che ha scritto un recente articolo proprio su questa contrapposizione], ma dato che sono anche un tipo educato te lo ripropongo in maniera diversa 🙂
Prima di tutto ti chiederei di chiarire, se vuoi, il significato della tua risposta di allora, cioè:

“si tratta di due concetti assai sghembi, sarebbe come relazionare banane e zibetti.  Perfino nella fitoterapia tradizionale ho problemi a intravvedervi folk knowledge, nel senso che la fitoterapia tradizionale è certo stata toccata dalla folk knowledge, ma come anche la medicina ufficiale, la chirurgia, il gioco degli scacchi, l’aranciata, la Coca-cola, ed i fast food.”

Pieroni: Il significato di quello che volevo dire è che le medicine tradizionali non hanno molto a che vedere con la folk knowledge, che è generalmente trasmessa oralmente. Infatti si parla sempre distintamente, in inglese almeno, di TMs e Folk Medicines, che sono le medicine che si basano sulla folk knowledge.
Le TMs (che hanno codificazioni consistenti) hanno poco di “folk”. Ciò non significa ovviamente che questo sia un male.

Si.: azzardo una riflessione. E’ un fatto che un settore delle cosiddette CAM, in particolare i fitoterapeuti di scuola tradizionale (tra i quali ci metto quelli appartenenti alla mia tradizione, britannica), dà per scontato il rapporto diretto tra folk knowledge e moderna fitoterapia tradizionale, una connessione originaria, più intima e vera, della fitoterapia con la tradizione. Mentre è ancora poco approfondita la riflessione su cosa significhi “rifarsi” alla tradizione, ed anche il riconoscimento del carattere “costruito” della tradizione.

Saltando di palo in frasca, riprendo un tuo commento nella discussione precedente, quando parlavi della rilevanza dell’etnobotanica e “di popoli che costruiscono il loro futuro”. Ti chiedo questo: nella natura composita dell’etnobotanica, c’è una tensione tra questa dimensione di cui tu parli, del fare parte di un processo dinamico, quindi di cambiamento, e la dimensione conservativa, sia nel senso biologico sia culturale?

P.: Sì c’è questa tensione, in coloro che ci riflettono. Ma l’etnobotanica dei migranti è un esempio molto bello di superamento del conflitto. Ovviamente sono ancora tanti gli etnobotanici che pensano che la “tradizione” sia statica e sia di per sé sempre bella e virtuosa. E quindi vedono in termine astorici le cose, perché “conservare” fino in fondo non è mai possibile (meno male!).

Si.: C’è il rischio dell’idealizzazione delle radici e delle tradizioni?  E d’altro canto non è in fondo questo un ruolo fondamentale, la difesa dall’erosione da parte della modernità? Anni fa ad un convegno IASTAM (International Association for the Study of Traditional Asian Medicine) si parlava appunto del destino della tradizione ayurvedica cannibalizzata dall’ayurveda americano “di ritorno”, new age. Naturalmente a prima vista era chiaro con chi stare, i predicatori americani dell’ayurveda “a la page” non erano simpatici. D’altro canto questo ritorno portava linfa, interessi e soldi alle università tradizionali ayurvediche che rischiavano di svanire.  Ma questo ritorno portava anche ad una grande semplificazione, le pratiche più “popolari” e meno esportabili sparivano a favore di quelle più “canoniche”.

P.: In qualsiasi “migrazione”, c’è da fare i conti con l’”adattamento culturale”, e soprattutto con negoziazioni culturali sempre dinamiche.
Direi che la virtù forse stia nel vedere con più curiosità ed empatia ciò che succede durante queste “migrazioni”, di capire cosa avviene, invece di dare giudizi.
Forse anche gli ayurvedici americani hanno aiutato gli ayurvedici “puristi” a “vedere” nuove cose. Non è il succo della vita quello di imparare sempre da un “incontro”?
Qualsiasi pratica medica – per lo parlare della ”scienza” – avrebbero molto da dare e ricevere se si facessero aperta alle osmosi con l’”altro da sé”.

Si.: Allora prendo questo spunto, perché mi pare molto interessante parlare di etnobotanica dei migranti. Mi pare un buon esempio dell’evoluzione dell’etnobotanica, e anche un esempio antiromantico, lontano dallo stereotipo tipico che vuole l’etnobotanica sempre esotica, avventurosa, legata alla scoperta di piante utili per la farmacologia moderna, legata all’antico o al “primitivo”, comunque legata al tradizionale.

Vuoi spendere due parole sull’etnobotanica dei migranti? Ritornando al testo di cui sei coeditor (con Ina Vandebroek: Traveling cultures and plants: the ethnobiology and ethnopharmacy of human migration) sbaglio se vedo in questi saggi da una parte un approccio cognitivista (comparazione di differenti tassonomie folk, di differenti saperi e classificazioni), e dall’altro un forte interesse per i risvolti di salute pubblica e di diritti alla salute delle comunità immigrate, l’uso dell’etnobotnica come chiave di lettura per gli studi sull’identità culturale? Mi pare un campo affascinante perché svela il carattere complesso delle relazioni piante-uomini, una complessità che forse rimane più nascosta, mascherata dall’immaginario romantico-avventuroso, negli studi o nelle divulgazioni sull”etnobotanica classica”.

P.: Gli studi sull’etnobotanica dei migranti ci permetterebbero di analizzare molto bene come la TK legata alle piante cambia nel tempo e nello spazio.
È questione non da poco in termini scientifici.
E‘ vero: il lato di public health c‘è sempre (e ci dovrebbe sempre essere) dietro una ricerca etnobotanica, ma certo nelle società occidentali urbane  risalta molto di più, perché l’agenda dei public health services mette al primo posto il discorso sulla salute dei migranti.
Penso che paradossalmente da questi studi possano arrivare di ritorno anche spunti ed idee per l’etnobotanica “classica”, spesso impantanata tra studio del folklore, romantica osservazione di un presupposto equilibrio società umane-natura, ed un pizzico di esotismo.
C’è il lato del public health, ma anche quello della public nutrition, dell’organizzazione e percezioni degli spazi verdi urbani in contesti multi-culturali, della sostenibilità ambientale e sociale di pratiche ed esperienze urbane.

Si.: Saltando ad un’altra frasca, ho pensato a te l’altro giorno quando un professore di farmacologia mi ha chiesto: “oltre alla medicina cinese e quella ayurvedica, non ce ne sono altre di medicine tradizionali che ci dicono ancora qualcosa, no?”. Pensavo a come è forte lo stereotipo che comunque reitera sempre la stessa cesura tra medicina alta, colta e medicina popolare, per cui anche un rappresentante della biomedicina si troverà a suo agio con le medicine alternative ma solo se sono canonizzate.

P.: Sì questa è la classica fata morgana per cui  un codice standardizzato di per sé significhi “poter dire qualcosa”… In realtà tutto ha da dirci qualcosa, e “ci parla”, anche le culture orali, non codificate, ed in fondo ogni esperienza umana.
Abbiamo ancora tantissimo da imparare (o ri-imparare) sulla dignità dei saperi tradizionali manuali ad esempio, che hanno “fatto” le medicine popolari e le TMs per molti secoli.
Ma per questo bisogna ripensare le cose su piccola scala, ed avere altri “modelli di sviluppo”, come li chiamavamo una volta.
Il collasso economico di oggi è un’opportunità straordinaria per cominciare a praticare sul serio la sostenibilità ambientale, sociale ed economica…

Si.: Finirei chiedendoti del panorama dell’etnobotanica in Italia, sia dal punto di vista delle aree di ricerca che a tuo parere meriterebbero attenzione, sia dal punto di vista formativo: se cioè un giovane studente desiderasse avvicinarsi a questo campo, cosa deve aspettarsi? Che percorsi può/deve fare (a parte andare in Germania o GB)?

P.: Non è possibile “studiare” etnobotanica in Italia, e nemmeno in Europa, né a livello di Laurea, né a livello di Master  vero e proprio (a parte un piccolo Master in Etnobotanica della durata di 12 mesi all’Università di
Kent a Canterbury, però molto focalizzato su aspetti antropologici).
Ma ci sono certo piccoli gruppi di ricerca nelle università italiane che hanno cominciato anche seriamente ad occuparsi anche un pochino di ricerca etnobotanica, ed a cui potenziali laureandi potrebbero afferire:

a Firenze i Proff. Signorini e Bruschi (Agraria) e la Prof.ssa Giusti (Lettere/Antropologia Culturale);

a Pisa il Prof. Tomei (Agraria);

a RomaTre la Prof.ssa Caneva (Biologia); a Roma/La Sapienza la Prof.ssa Leporatti (Farmacia);

a Milano la Prof.ssa Fico (Farmacia);

a Genova il Prof. Mariotti (Biologia);

a Cagliari i Proff. Maxia e Ballero (Farmacia);

a Sassari il Prof. Camarda (Agraria);

a Palermo la Prof.ssa Lentini (Farmacia);

a Catania la Prof.ssa Napoli (Biologia).

Ed infine il sottoscritto a Bra (Scienze Gastronomiche).

Per aspetti invece strettamente e fitoetnolinguistici:i Proff. Trumper e Maddalon (Univ. della Calabria a Cosenza) e il Prof. Sanga (Venezia/Ca’ Foscari), tutti a Lettere.

Si: bene, come sempre, grazie mille, e a presto