Uomo e piante 2/dimoltialtri

Continua questa serie di post sul rapporto uomo e piante nella storia. Ci eravamo lasciati qui con la promessa di dare un’occhiata più da vicino all’evoluzione delle piante e dei loro metaboliti secondari, e poi all’evoluzione dell’uomo, come preambolo prima di mescolare il tutto nel calderone :-).

Quindi eccoci qui a parlare de…

L’evoluzione delle piante – una breve descrizione
La vita ebbe inizio nelle acque. E fu vita autotrofa, pacifica, a bassa diversità. La nascita dei primi predatori fu la causa iniziale di una esplosione evolutiva che ci ha portato ai giorni nostri.

L’azione predatoria fece da stimolo ad una diversificazione degli autotrofi verso nuove nicchie ecologiche, nuovi modi di vivere negli oceani e nuove strategie per sfuggire ad una minaccia nuova. Questa diversificazione, accompagnata da una diversificazione parallela nei predatori, portò in tempi geologicamente brevi alla saturazione delle nicchie oceaniche, e quindi al tentativo di conquistare un habitat fino ad allora vergine, le terre emerse.

Ma questa conquista richiedeva modificazioni qualitativamente molto diverse rispetto a quelle precedenti: bisognava in qualche modo rendersi autonomi dall’acqua, e l’evoluzione successiva è tutta percorsa da questo tema, l’interiorizzazione dell’oceano. Ma perché questa storia potesse avere inizio erano necessarie certe condizioni di partenza, senza le quali la vita come la conosciamo non sarebbe stata in grado di conquistare i nuovi territori; esse erano: la presenza di stabili ambienti costieri, la formazione del suolo e lo sviluppo di condizioni climatiche ed atmosferiche adatte.

Colonizzazione
Le condizioni per la colonizzazione delle terre emerse da parte delle piante si presentarono nel tardo Ordoviciano, circa 458-443 milioni di anni fa. Ma le prime evidenze fossili del fatto che le piante acquatiche avessero effettivamente sviluppato delle caratteristiche compatibili con un ambiente non acquoso si situano nel primo Siluriano (ca. 470-430 milioni di anni fa). Nei fossili di questo periodo si riscontrano misure per la protezione dal disseccamento, le prime cellule specializzate per il trasporto di acqua e nutrienti, le prime strutture di supporto meccanico e modalità riproduttive che non dipendono principalmente da acqua esterna.

Le inferenze da dati scarsi sono sempre rischiose, ma sembra possibile dire che nel tardo Siluriano – primo Devoniano (ca. 430-400 Ma) dalle alghe verdi emersero le prime piante terrestri, che comprendevano piante non-vascolari (le Briofite), piante vascolari (Tracheofite) e piante con caratteristiche miste. Probabilmente le primissime piante terrestri a comparire furono quelle non vascolari, in particolare le Epatiche, seguite dai muschi, forse i più vicini, evolutivamente, alle piante vascolari.(1)

Ma torniamo alla nostra storia di colonizzazione.

Intorno al primo Devoniano (ca. 408 milioni di anni fa) avviene il primo passaggio evolutivo rivoluzionario: compaiono le prime piante vascolari, ed intorno ai 400 milioni di anni fa compaiono le Eutracheofite, il gruppo tassonomico che comprende quasi il 99% delle piante moderne. Quindi possiamo dire che molte delle caratteristiche della nostra flora si stabilirono 400 milioni di anni addietro.

Queste prime piante terrestri erano felci, licopodi e code cavalline, piccole erbacee alte al massimo un metro, che nel giro di circa 100 milioni di anni avrebbero formato completi ecosistemi forestali con alberi alti fino a 35 metri e simili alle nostre foreste attuali anche se, a vederle ora, queste foreste primordiali ci apparirebbero forse aliene.

Questa profonda e rapida trasformazione non fu dovuta soltanto a modificazioni adattive delle piante rispondenti a fattori biotici, ma anche a grandissimi cambiamenti climatici e tettonici, che compresero lo spostamento del polo Sud, tre glaciazioni e una forte riduzione dell’anidride carbonica dell’atmosfera.

Le piante svilupparono meccanismi sempre più complessi, “inventarono” radici, cortecce, foglie, legno e una vascolatura più efficiente: fino alla comparsa, circa 380 milioni di anni fa, delle prime forme arboree; e già intorno al primo Carbonifero, 350 milioni di anni fa, esistevano foreste di equiseti, licopodi, felci e pro-gimnosperme.

Ma la vera rivoluzione era ancora da venire. Tra i 290 e i 249 milioni di anni fa (Permiano), in corrispondenza di un cambiamento climatico caratterizzato da un graduale e continuo riscaldamento ed inaridimento, ed in seguito alla formazione del supercontinente Pangea (ca. 300 milioni di anni fa), emergono e si diffondono le prime piante a seme (Spermatofite), che sono piante a seme nudo (Gimnosperme). Il nuovo gruppo di piante comprende le Cycadi, le Ginkgoaceae, le Bennetite e le Pteridofite. Il seme fu una rivoluzione radicale rispetto al metodo a spore adottato da tutte le piante fino a quel momento.

Le spore, per potersi incontrare e fondersi fino a formare un nuovo individuo, avevano bisogno di essere rilasciate in un ambiente fortemente acquoso, dove potessero sopravvivere senza disidratarsi e nuotare l’una verso l’altra per potersi incontrare.

Il seme sciolse questa dipendenza. Infatti le “spore” (polline e ovuli) non vengono più rilasciate nell’ambiente: l’ovulo rimane fisso ed il polline, disperso dal vento, lo raggiunge e lo feconda. Dopo la fecondazione, inizia subito a svilupparsi il nuovo individuo, ma lo sviluppo si ferma subito e la protopiantina (l’embrione) rimane racchiusa in un ambiente ricco di acqua e nutrienti e protetta da una capsula a tempo, solida e e pronta ad aprirsi solo quando incontra le condizioni ambientali adatte: il seme.

E’ chiaro che la pianta a seme è avvantaggiata: può colonizzare ambienti nuovi, aridi, o sopravvivere nelle mutate condizioni ambientali che hanno ridotto l’ambiente tropicale (fino ad allora quasi universale sulla terra) a ridotte fasce. Inoltre arriva sul terreno in vantaggio sulle spore: la piantina è già formata, attende solo le condizioni giuste, e parte quindi in posizione di vantaggio.

Non sorprende, quindi, che, dopo la comparsa delle Conifere nel periodo subito successivo (Triassico ca. 248-206 milioni di anni fa), entro la prima parte del Giurassico (206-180 milioni di anni fa) la vegetazione globale sia ormai dominata da piante a seme ed inizi, almeno in parte, ad assomigliare alla copertura forestale attuale.

La terza grande rivoluzione (dopo le piante vascolari e le piante a seme) è quella delle piante a fiore (o piante a seme nascosto – Angiosperme), che avviene 140 milioni di anni fa, molto tardi dal punto di vista evolutivo (300 milioni di anni dopo le Tracheofite e 220 milioni di anni dopo le Spermatofite), probabilmente a partire dalle Bennettitales e/o Gnetales. La comparsa tardiva è però seguita da una rapida diversificazione a partire da 100 milioni di anni fa, diversificazione che in tempi relativamente brevi (nel Terziario tardo, ca. 65 milioni di anni fa) porta ad una dominanza globale delle Angiosperme.

Il gruppo si diversifica rapidamente sia dal punto di vista dei meccanismi riproduttivi che della morfologia: compaiono prima le dicotiledoni erbaceo-arbustive e di seguito le monocotiledoni e le strutture floreali passano da semplici fiori a simmetria radiale con molte componenti a fiori sempre più asimmetrici, con fusione di parti, fino al raggruppamento di singoli fiori in infiorescenze (come nelle Asteraceae).

L’esplosione dei metaboliti secondari – difesa e riproduzione
L’avvento delle Angiosperme porta ad un’altra rivoluzione che ci interessa molto da vicino. L’esplosione di diversità portata da questo nuovo gruppo non è limitata alle forme o alle modalità di riproduzione. Essa si esplicita anche nella produzione di una panoplia di composti chimici di difesa o di comunicazione. Le piante, come organismi sessili, non possono sfruttare le strategie di attacco e difesa dinamiche proprie degli animali: fuggire o attaccare il nemico. Esse hanno da subito dovuto utilizzare delle difese di tipo statico, per dissuadere i predatori dal mangiarle.

Le prime piante emerse usarono difese di tipo meccanico, sfruttando i meccanismi già esistenti per la costruzione delle strutture di supporto e di trasporto; usarono quindi lignina e altre sostanze per rendersi coriacee e difficili da digerire, spine, ecc.

Ma ben presto il fenomeno della coevoluzione, ovvero la rincorsa di risposte e controrisposte palleggiate tra piante e predatori le costrinse ad adottare difese più sofisticate, ovvero a sintetizzare delle tossine che in virtù della loro azione (dalla repellenza alla velenosità) dovevano in teoria servire per allontanare l’erbivoro, per ucciderlo o per fargli ricordare che era meglio non mangiare quella pianta!

Le prime briofite e gimnosperme iniziarono sviluppando tannini condensati, glicosidi cianogenici, ormoni giovanili ed ecdisoni, ma sono appunto le Angiosperme che arrivano alla più grande diversificazione produttiva, anche in risposta all’escalation messa in atto dai predatori che si adattavano alle nuove molecole (Tabella 1).

Circa 60 milioni di anni fa, con le prime angiosperme legnose, vediamo la proliferazione di metaboliti derivati da un percorso metabolico nato per la produzione di metaboliti primari come gli aminoacidi, il percorso dell’acido shikimico: quindi i primi alcaloidi (classe regina dei metaboliti bioattivi, che tanto ha segnato la storia della farmacia) e gli oli essenziali caratterizzati da fenoli e derivati; i derivati del percorso dell’acetato o misti, come isoflavoni, saponine, glicosidi cardiaci; e isotiocianati, glicosidi cianogenici. Il passaggio alle erbacee portò ad uno spostamento dal percorso dell’acido shichimico a quello dell’acido mevalonico, più duttile e con maggiori potenzialità di diversificazione. Gli oli essenziali si arricchirono in composti terpenici, meno tossici per la pianta, nacquero i lattoni mono e sesquiterpenici, gli alcaloidi steroidei, i flavonoli.

Tabella 1

Taxa

Metaboliti secondari

Gimnosperme/ Briofite Tannini condensati e glicosidi cianogenici, ormoni giovanili ed ecdisoni
Angiosperme

legnose

Alcaloidi isochinolinici ed ellagitannini
Amminoacidi non proteici, isoflavoni, glicosidi cianogenici
Saponine e isotiocianati
Glicosidi cardiaci
Angiosperme erbaceae Lattoni monoterpenici e alcaloidi steroidei
Lattoni sesquiterpenici, flavonoli e alcaloidi pirrolizidinici

Seguendo l’asse evolutivo felci-gimnosperme-angiosperme legnose-angiosperme erbacee si notano, in accordo con la teoria coevolutiva, l’aumento e la diversificazione dei deterrenti, la crescente complessità delle strutture chimiche e, di converso l’adattamento a queste strutture dei predatori più importanti: gli insetti. In effetti è avvenuto che tutte le molecole di difesa conosciute (ad esclusione dei tannini condensati) siano state utilizzate a proprio vantaggio da almeno una specie di insetto.

Uno schema molto importante per descrivere questo tipo di adattamento degli insetti alle tossine è quello dei “tre livelli trofici”. I tre livelli trofici sono quello della pianta che produce la tossina, quello dell’insetto che si adatta e gestisce la tossina (usandola a proprio beneficio), e quello dei parassiti dell’insetto sui quali agisce la tossina (uccidendoli o inibendoli) (Tabella 2).

Tabella 2

Specie vegetale Metabolita e tossicità Specie animale
Asclepiadaceae Glucosidi cardiottivi        (calotropina, pirazina) Farfalla monarca (Danaus plexippus)
Senecio spp.(S.      jacobea e S.     vulgaris) A. pirrolizidinici        (retronecina) Arctia caja e Tyria jacobea
Aristolochia sp. Acido aristolochico Battus archidanus
Cucurbita sp. Cucurbitacina D Diabrotoca balteata
Lotus cornicolatus Gl. cianogenici (linamarina) Zygaena trifolii
Brassica oleracea Glucosinolarti (sinigrina) Pieris brassicae
Plantago lanceolata Iridoidi (aucubina) Euphydryas cynthia
Zamia floridina Cicasina Eumaeus atala
Salix sp. Salicina Chrysomela aenicollis
Cytisus scoparius Alc. chinolizidinici Aphis cytisorum
Omphalea Alc. poliidrossilici Urania fulgens

Secondo questa logica, le specie vegetali evolutivamente più avanzate dovrebbero essere più facilitate delle altre nella lotta contro i predatori. In effetti, nelle ombrellifere (Apiaceae) troviamo che, ordinando le molecole di difesa secondo l’asse temporale-evolutivo, esse si distribuiscono anche secondo l’asse di tossicità e di complessità strutturale: prima le idrossicumarine, poi le furocumarine lineari, e quindi le furocumarine angolari. E in effetti le specie contenenti quest’ultimo tipo di molecola si possono difendere da un numero più elevato di predatori.

Possiamo schematizzare l’andamento dei rapporto tra pianta e predatore in questo modo:

Tabella 3: schema coevolutivo pianta-predatore

Sequenza Pianta Animale
1 Sintesi ed accumulo

tossina 1

Evitato da tutte le specie
2 Sintesi continuata Adattamento di poche specie.
3 Sopravvivenza con

predazione limitata

Tossina 1 diventa attraente per le specie adattate
4 Sopravvivenza con

predazione limitata

Aumentano le specie adattate, aumenta la pressione degli erbivori sulle piante
5 Sintesi ed accumulo

tossina 2

Evitato da tutte le specie
6 Sintesi contemporanea

tossina 1 e 2

Adattamento di poche specie, evitata da molte specie

—————————————————————-

Note
1. Willis KJ, McElwain The evolution of plants. Oxford, Oxford University Press, 2000