Gummi Myrrha

Continua con questa seconda parte il pezzo sulla mirra, che inizia qui.

Mirra oggi: definizione e descrizione

Ci sono 190 specie di Commiphora (famiglia delle Burseraceae) distribuite in Africa, India, Penisola Arabica usate tradizionalmente come incenso e medicina.  La mirra (Gummi Myrrha) è la gommo-oleoresina essiccata all’aria ottenuta dai fusti e dai rami di Commiphora myrrha (Nees) Engl.  (sinonimi Balsamea myrrha (T.Nees) Oken;B. myrrha Baill.; B. playfairii Engl.; Balsamodendrum myrrha T.Nees; Commiphora coriacea Engl.; C. cuspidata Chiov.; C. molmol (Engl.) Engl. ex Tschirch[82].

Questa specie è un albero indigeno dell’Africa Nordest (Gibuti; Etiopia; Somalia e Kenya), in particolare di Somalia ed Etiopia (e in misura minore Sudan)(CHP) e dell’Arabia meridionale (Oman; Yemen).  La droga, a volte di qualità inferiore, si ricava però anche da altre specie: Commiphora habessinica (O.Berg) Engl.; (sinonimoC. abyssinica); Commiphora schimperi (O.Bergman) Engl.; altre inferiori C. foliacea Sprague, Commiphora playfairii (Hook.f.) Engl C serrulata Engl.. Commiphora africana (A.Rich.) Endl in Etiopia e Sudan.

Commiphora myrrha3

La pianta cresce fino a 3 metri di altezza o più anche se si conoscono forme nane, e porta foglie dentate verdi. Fessure e spaccature si formano naturalmente nella corteccia dalle quali la resina essuda naturalmente dai dotti circolari del parenchima, ma la resa aumenta con le incisioni.

Commiphoram myrrha Köhler–s_Medizinal-Pflanzen-019

Nomi popolari: Myrrh, Myrrha, Myrrhe, African Myrrh, herabol Myrrh, Somali Myrrh, Smyrna, Mur, Murry, Bola o Bol, Vola, Murr, Mirra. olio di Mirra, Stacte.

Raccolta: la resina di mirra, come quella dell’incenso, viene raccolta incidendo la corteccia e lasciando che la resina fuoriesca, si raccolga e si indurisca, in due o tre settimane. A questo punto può essere staccata e raccolta. Questo metodo, ancora in uso oggi, è stato descritto per la prima volta da Teofrasto e più tardi da Erodoto.

Le masse raccolte sono rosso-marroni, vengono ammassate in sacche fatte di pelle di capra e mandate quasi esclusivamente ad Aden. La qualità di Mirra più ricercata è la “ogo”, proveniente dalle aree interne lontane dalla costa somala e da Guban[83]. Tempo addietro le masse resinose (gocce o lacrime di mirra) venivano esportate da Aden in paesi stranieri dove venivano lavorate per produrre resinoidi ed olii.

La Somalia è il più grande esportatore al mondo di Mirra, Opopanax (Commiphora kataf (Forssk.) Engl., [= C. erythraea (Ehrenb.) Engl.], Olibanum (Boswellia sacraFlueck. [=B. carteri Birdw.]) e Maidi (B. frereana Birdw.). Le specie di Commiphoraso trovano nelle località interne secche dal nord all’estremo sud, ma buona parte del materiale esportato dalla Somalia viene in realtà raccolto in Etiopia. Alla fine degli anni 80 il volume di resine di Commiphora esportato ammontava a 1000 tonnellate[84]

La gommo-resina

La sesta edizione della Farmacopea Italiana[85] distingue tra mirra eletta emirra in sorte. La prima “si presenta in grani (lagrime) od in pezzi irregolari di varia grossezza, di colore rossastro o rosso-bruno, screpolati, un po’ efflorescenti, alquanto traslucidi, fragili, di frattura lievemente granellare e lucida, con alcune vene o piccole macchie biancastre o giallicce, talore semilunari. Sapore amarognolo, odore aromatico.

La mirra in sorte è formata di masse conglomerate, brune, opache, miste a frammenti di corteccia ed a varie impurità.”

Le Monografie dell’OMS sulle piante medicinali[86] così la descrivono: “Gummi Myrrha consiste nelle oleo-gommo-resine essiccate all’aria essudate da fusti e rami della Commiphora molmol Engler (Burseraceae) ed altre specie di Commiphora correlate, incluse  C. abyssinica Engl., C. erythraea C. schimperi Engl., ma escludendo C. mukul.”  La gommo-resina si presenta come: “gocce o grumi di gocce irregolari o arrotondate di varie dimensioni, di colore da giallo-marroncino a rosso-marrone fino a quasi nero. La superficie è quasi completamente coperta di polvere grigiastra o giallognola; la superficie interna è giallastra o rosso-marrone, che a volte presenta macchie o linee bianche; la frattura è cerosa, granulare, concoidale (a superficie curva) e dà frammenti sottili e traslucenti”.

L’odore è caratteristico, caldo-balsamico, dolce e con toni speziati, aromatico e pungente quando la resina è fresca; il sapore è aromatico, amaro, aspro[87].

La gommo-resina si scioglie parzialmente in acqua, alcol ed etere.

Commiphora myrrha6

Commiphora myrrha4

Commiphora myrrha resina grani

La resina viene usata come nota di base speziata con carattere orientale, come base legnosa, di foresta, di aghi di pino.  Si associa bene a geranio, muschio, patchouli, spezie e basi floreali pesanti[88].

Prodotti derivati[89]

La distillazione in corrente di vapore della gommoresina produce il classico olio di mirra, con rese da 1,5% a 15%, ma grazie a recenti tecnologie (come ad esempio distillazione controcorrente “short-path” o “gas-swept” si producono nuove qualità con rese molto elevate.

Olio di Mirra: liquido vischioso giallo con odore caratteristico della gommoresina, cioè resinoso e dolce balsamico, ma con anche un aspetto amaro/astringente. Odore molto persistente. Nota finale debole, secca, legnosa tipo vetivert.

Resinoide di Mirra: ottenuto per estrazione della gommoresina con solventi volatili (nel passato toluene ed esano); è un solido rosso-marrone con odore dolce, balsamico, di zucchero integrale, e uno sfondo oleoso, legnoso e terpenico. La nota finale è dolce, in qualche modo caramellosa, terpenica e di muffa.

Tintura di Mirra: preparata per macerazione della mirra in polvere con alcol etilico a 80°. Appare un liquido di colore rossastro non molto intenso. Odore e sapore di mirra, reazione acida al tornasole; diluita con acqua si intorbida[90].

Composizione chimica

Come per le specie appartenenti al genere Boswellia, anche nelle specie diCommiphora l’essudato contiene polisaccaridi ed è quindi classificato come gommoresina. Una volta indurita è scura e amara al contrario della gommoresina diBoswellia che è pallida e dolce.

La gommoresina è frazionabile in tre parti, due liposolubili ed una idrosolubile:

1. Frazione volatile liposolubile, o olio essenziale (1,5-17% – forbice più comune 3-8%):  caratterizata sia dai monoterpeni sia dai sesquiterpeni. Tra i monoteropeni troviamo α-, β- e γ−bisabolene, α-pinene, dipentene e limonene, mentre tra i sesquiterpeni troviamo heerabolene, cadinene, curzerene (11.9%), curzerenone(11.7%), diidripirocurzerenone (1,1%), elemolo, beta-elemene, T-cadinolo, commiferinae vari furanosesquiterpenoidi tra i quali il furanoeudesma-1,3-diene (12.5-34.9%), il  furanodien-6-one (0.4% ), il furanoeudesma-1,4-diene-6-one, l’isofuranogermacrene, il 1,10(15)-furanodien-6-one, il 2-metossi furanodiene, illindestrene (3.5-12.9%), ecc.  Sono presenti anche composti fenolici (cinnamaldeide, cuminaldeide, eugenolo, alcol cuminico, m-cresolo), e germacrone[91] (5.8%). Secondo Burfield[92] i sesquiterpeni, ed in particolare i derivati furanoidi[93], sono icomposti più importanti per l’aroma caratteristico della mirra: furanoeudesma-1,3-diene, lindestrene, curzerenone, curzerene, cadinene, diidropirocurzerenone. Il germacrone impartirebbe l’odore caratteristico, con note erbacee.

2. Frazione non volatile liposolubile o resina (20%, massimo 40%):  acidi alfa-, beta- e gamma-commiforico, acido commiforinico, eeraboresene, alfa- e beta-eerabomirroli e commiferina, campesterolo, beta-sitosterolo, alfa-amirone, 3-epi-alfa-amirina.

3. Frazione non volatile idrosolubile o gomma (30–60%): composti che  una volta idrolizzati danno D-galattosio, 4-O-metilglucoronato, L-arabinosio in rapporto 8:7:2[94]. Presente anche dello xilosio.

Pasted Graphic 1

Pasted Graphic 2 Pasted Graphic 3 Pasted Graphic 4 Pasted Graphic 5

Utilizzi

Bruciata fin dall’antichità come incenso in Arabia, Somalia ed Etiopia[96]. Morton (1977) riporta che il fumo della resina bruciata veniva usato in caso di febbri e per altri disturbi[97].

Una delle droghe vegetali più antiche e apprezzate,  la mirra viene ancora usata a livello popolare, per esempio in Marocco come balsamo per disturbi nervosi e applicata durante le cerimonie di pulizia come fumigazione[98]. Viene usata in Egitto come masticatorio in caso di tosse[99]. Nel mondo arabo si usa come antinfiammatorio, antipiretico, antisettico, e stimolante, ed è un rimedio per gastropatie, indigestione, tosse, asma, bronchite, dolore artritico, lebbra e sifilide.

Mrs Grieve[100]  la considera un astringente, vulnerario, tonico e stimolante. Lo consiglia come emmenagogo e come tonico in caso di dispepsia, come espettorante in mancanza di segni di febbre, uno stimolante delle mucose, come carminativo stomachico che eccita l’appetito e il flusso di succhi gastrici e come lavaggio astringente.

Tra gli utilizzi che cita troviamo catarro cronico, tisi, clorosi, amenorrea (con Aloe), gengivite, faringite, afta, ulcere indolenti. Esternamente può essere usata per il suo effetto rubefacente.

Secondo Felter[101], la mirra è la miglior applicazione locale per gengiviti, faringiti con afte e ulcere indolenti, faringite cronica con membrane pallide e umide, tonsillite. Internamente, secondo l’autore, la mirra è uno stimolante delle mucose e non dovrebbe essere usata in condizioni infiammatorie. Piccole dosi promuoverebbero la digestione e sarebbero antisettiche, ma dosi più elevate aumentano il ritmo cardiaco e la temperatura e sono irritanti per le mucose gastriche. E’ comunque un rimedio per soggetti debilitati e condizioni croniche e atoniche, soprattutto per quanto riguarda i polmoni.

Secondo la MTC è una pianta amara e neutrale, che rafforza il sangue e riduce il dolore, riduce il gonfiore e promuove la guarigione delle ferite. E’ una pianta con azioni e indicazioni del tutto simili alla Boswellia (incenso) ed insieme ad essa viene usata per trattare i dolori derivanti da traumi e gonfiori[102]: 1. dolore causato da stagnazione del sangue (dismenorrea; mal di stomaco; dolori articolari da vento-freddo-umido; traumi; dolore da foruncoli e eruzioni); 2. foruncoli e ulcere (esternamente).

Al giorno d’oggi viene occasionalmente utilizzata internamente come carminativo, per problemi di stomaco e come espettorante, ma è usata soprattutto come astringente ed antisettico locale per disordini delle mucose orofaringee e della pelle.

Gli Arabi spalmano la resina su una tela nera che, dopo essersi indurita, viene usata per assicurare le fratture. Gli Indiani dissolvono la mirra in latte di asino o di donna e ne fanno uso come collirio; la somministrano alla donna che allatta per aumentare il flusso di latte; la mescolano con borace in caso di stomatite parassitica; mescolano la tintura di mirra con glicerina in caso di difteria; e la consigliano in forma di tintura in caso di clorosi e dismenorrea in giovani donne. In Dhofar la resina dispersa in acqua viene bevuta o spalmata sul corpo in caso di febbre.  In Libano la mirra viene usata come carminativo, fumigatorio, vulnerario, gastrite e influenza. Il fumo viene diretto sulle ferite per favorire la guarigione. In Oman la mirra calda viene applicata alle carie in caso di mal di denti. In Arabia saudita la resina viene applicata al seno delle madri che allattano per svezzare i bambini.  In Yemen la resina viene spalmata su morsi di serpente e ferite per guarirle, e sul pene come afrodisiaco[95].

Moore[103] la considera una pianta stimolante per tutti i sistemi. E particolarmente per il fegato, il sistema respiratorio, cardiovascolare, linfatico, riproduttivo e per le mucose. Ha una azione tonica sul sistema nervoso centrale e sul parasimpatico.

I prodotti a base di Mirra sono spesso stati usati a livello topico per problemi di igiene orale, una soluzione ottenuta mescolando e scuotendo fortemente la gommoresina in acqua viene usata per disinfettare le gengive, per le infiammazioni della mucosa orale e faringea e per le afte orali. L’olio di mirra è stato usato nei dentifrici. Altre applicazioni sono labbra secche, emorroidi, ferite ed abrasioni, foruncolosi, alitosi.

Resinoidi ed assolute di Mirra sono usate principalmente in fragranze orientali per impartire una nota balsamica, dolce e resinosa. Il resinoide viene usato anche in fragranze da incenso e basi di ambra dolce. Alcuni autori dichiarano che l’odore della mirra somiglierebbe a quello della traspirazione umana, ma altri autori non ritrovano un carattere fortemente animalico o sessuale.

Farmacologia

Dati sperimentali: la resina è antiossidante (scavenger dei radicali liberi), tireotropica, inibitrice delle prostaglandine, e protegge da vari agenti necrotizzanti, citotossici in topi.

Nella sperimentazione animale la resina, l’olio essenziale e i triterpeni hanno mostrato effetti antimicrobici[104]; l’estratto grezzo della gommoresina mostra attività in vitro di potenziamento dell’attività della ciprofloxacina e della tetraciclina contro S. aureus (anche resistente ai farmaci), molte varietà diSalmonella enterica e di Typhimurium e due ceppi di K. pneumoniae[105].

Altre attività provate in vitro o in vivo su modelli animali sono quelle deodorant[106]e, anti-infiammatori[107]a, antitumor[108]ale, astringente, antipiretic[109]a, ipoglicemizzant[110]e, e protettiva dalle ulcer[111]e gastriche.

La resina sembra stimolare la muscolatura liscia[112] e forse la peristalsi[113]. Stimola il tono uterino[114] e promuove il flusso ematico uterino[115].

I sesquiterpeni furanoeudesma-1,3-dieni e curzarene sono analgesici in vi[116]vosu modelli animali (bloccati da naxolone), con meccanismo forse mediato da recettori oppioidi (una spiegazione del Vinum murratum offerto a Gesù per le proprietà analgesiche?)

Cautele

In mancanza di dati completi, si sconsiglia l’utilizzo della resina di mirra in gravidanza, in allattamento e a bambini, a meno di una specifica indicazione di un professionista[117].

Dosaggio

  • Tintura di Mirra (1:5; 90% etanolo)
  • Topico
  • Tintura pura al bisogno sulla pelle o sulle mucose orali 2-3 volte al giorno
  • Colluttorio:  5–10 gocce in un bicchiere di acqua per una azione blanda, fino a 60 per attività più drastiche.
  • Dentifricio in polvere:  10% di gommo-resina polverizzata.

<<<<>>>>

[82] Secondo alcuni autori⁠ Commiphora molmol era diversa dalla mirra (veniva anche chiamata mirra africana) ma l’odore del fumo era simile e per questa ragione veniva venduta come mirra. Cfr. Tucker, A. O. 1986. Frankincense and myrrh. Economic Botany 40 (4): 425–433

[83] Burfield T. Natural aromatic material – odours & origins. The Atlantic Institute of Aromatherapy, 2000

[84] Bowen, M.R. 1990. A bibliography of forestry in Somalia and Djibuti. Edition two. Natural Resources Institute for Overseas Development Administration, UK and National Range Agency, Somalia. Somali Forestry Papers No. 3

[85] Farmacopea Ufficiale del Regno d’Italia, VI edizione , 1940, Roma

[86] WHO (1999) WHO monographs on selected medicinal plants Vol 3  World Health Organization, Geneva)

[87] Tucker, A. O. 1986. Op. Cit. Langenhein J.H. (2003) Op. Cit.

[88] Arctander, S (1994) Perfume and Flavor Materials of Natural Origin. Allured Publishing Corporation

[89] Burfield T. 2000 Op. Cit.

[90] Farmacopea Ufficiale del Regno d’Italia, Op. Cit.

[91] Brieskorn CH e Noble P (1982) “Unhaltstoffe des eterischen ols de Myrrhe II. Sesquiterpene & Furanosesquiterpene” Medica 44, 87; Olhoff G. (1990) Scents & Fragrances Springer-Verlag pp132-188. Marongiu, Bruno, Alessandra Piras, Silvia Porcedda, and Andrea Scorciapino. “Chemical Composition of the Essential Oil and Supercritical CO2 Extract of Commiphora Myrrha (Nees) Engl. and of Acorus Calamus L.” Journal of Agricultural and Food Chemistry, 2005; Rahman, M , Mark Garvey, Laura Piddock, and Simon Gibbons. “Antibacterial Terpenes from the Oleo-resin of Commiphora Molmol (Engl.).” Phytotherapy Research: PTR, 2008.  Hanus LO,  Rezanka T, Dembitsky VM, Moussaieff A (2005)  Myrrh – Commiphora chemistry. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2005, 149(1):3-28;   Zhu, N, H Kikuzaki, S Sheng, S Sang, M Rafi, M Wang, N Nakatani, R DiPaola, R Rosen, and C Ho. “Furanosesquiterpenoids of Commiphora Myrrha.” Journal of Natural Products, 1, 2001

[92] Burfield T. 2000 Op. Cit.

[93] Brieskorn CH e Noble P (1982) Op. Cit.

[94] Hanus LO,  Rezanka T, Dembitsky VM, Moussaieff A (2005) Myrrh – Commiphora chemistry. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2005, 149(1):3-28

[95] Duke, J.A., (2008) Op. Cit.

[96] Uphof, J. C. T. 1968. Dictionary of economic plants. New York: Verlag von J. Cramer.; Usher, G. 1974. A dictionary of plants used by man. New York: Hafner Press.

[97] Lemenih, M., T. Abebe, and M. Olsson. 2003. Gum and resin resources from some Acacia, Boswelli and Commiphora species and their economic contributions in Liban, south-east Ethiopia. Journal of Arid Environments 55 (3): 465–482.

[98] Bellakhdar, J.J. 1997. La pharmacopoée marocaine traditionelle. Médecine Arabe ancienne et savouirs populaires. Ibis Press: Paris.

[99] Sameh F. AbouZid Abdelhalim A. Mohamed (2011) Survey on medicinal plants and spices used in Beni-Sueif, Upper Egypt  Journal of Ethnobiology and Ethnomedicine, 7:18

[100] Grieve, M (1971, repr. 1931) 1971 A modern herbal; the medicinal, culinary, cosmetic and economic properties, cultivation and folk-lore of herbs, grasses, New York, Dover Publications

[101] Felter, HW (1922) The Eclectic Materia Medica, Pharmacology and Therapeutics. Eclecdtics Publications, USA

[102] Miller JM, Goodell HB. (1968) Frankincense and myrrh. Surg Gynecol Obstet Aug; 127(2):360–5.  Greene DA. (1993) Gold, frankincense, myrrh, and medicine. N C Med J Dec; 54(12):620–2

[103] http://www.swsbm.com/ManualsMM/MatMed5.pdf

[104] Newall CA, Anderson LA, Philpson JD. Herbal Medicine: A Guide for Healthcare Professionals. London, UK: The Pharmaceutical Press, 1996.  The Review of Natural Products by Facts and Comparisons. St. Louis, MO: Wolters Kluwer Co., 1999

[105] Rahman, M , Mark Garvey, Laura Piddock, and Simon Gibbons. “Antibacterial Terpenes from the Oleo-resin of Commiphora Molmol (Engl.).” Phytotherapy Research: PTR, October 1, 2008. http://dx.doi.org/10.1002/ptr.2501.

[106] Wichtl MW. Herbal Drugs and Phytopharmaceuticals. Ed. N.M. Bisset. Stuttgart: Medpharm GmbH Scientific Publishers, 1994.

[107] Duwiejua M, Zeitlin IJ, Waterman PG, Chapman J, Mhango GJ, Provan GJ.  Anti-inflammatory activity of resins from some species of the plant family Burseraceae. Planta Medica, 1993, 59:12–16.  Atta AH, Alkofahi A. Anti-nociceptive and anti-inflammatory effects of some Jordanian medicinal plant extracts. Journal of Ethnopharmacology, 1998, 60:117–124.  Tariq M, Ageel AM, Al-Yahya MA, Mossa JS, Al-Said MS, Parmar NS. Anti-inflammatory activity of Commiphora molmol. Agents and Actions, 1985, 17:381–382.

[108] al-Harbi MM, Qureshi S, Raza M, Ahmed MM, Giangreco AB, Shah AH.(1994) Anticarcinogenic effect of Commiphora molmol on solid tumors induced by Ehrlich carcinoma cells in mice. Chemotherapy 1994:40:337-47.  Qureshi S, al-Harbi MM, Ahmed MM, Raza M, Giangreco AB, Shah AH. (1993) Evaluation of the genotoxic, cytotoxic, and antitumor properties of Commiphora molmol using normal and Ehrlich ascites carcinoma cell-bearing Swiss albino mice. Cancer Chemother Pharmacol. ;33(2):130-8.

[109] Tariq M et al. Anti-inflammatory activity of Commiphora molmol. Agents and Actions, 1985, 17:381–382.  Mohsin A et al. Analgesic, antipyretic activity and phytochemical screening of some plants used in traditional Arab system of medicine. Fitoterapia, 1989, 60:174–177.

  • [110] Al-Awadi FM, Gumaa KA. Studies on the activity of individual plants of an antidiabetic plant mixture. Acta Diabetologica Latina, 1987, 24:37–41.
  • Ubillas RP et al. Antihyperglycemic furanosesquiterpenes from Commiphora myrrha. Planta Medica, 1999, 65:778–779
  • [111] al-Harbi MM, Qureshi S, Raza M, et al. Gastric antiulcer and cytoprotective effect of Commiphora molmol in rats. J Ethnopharmacol 1997;55:141-50
  • [112] The Review of Natural Products by Facts and Comparisons. St. Louis, MO: Wolters Kluwer Co., 1999.   McGuffin M, Hobbs C, Upton R, Goldberg A, eds. American Herbal Products Association’s Botanical Safety Handbook. Boca Raton, FL: CRC Press, LLC 1997

[113] The Review of Natural Products by Facts and Comparisons. St. Louis, MO: Wolters Kluwer Co., 1999.

[114] McGuffin M, Hobbs C, Upton R, Goldberg A, 1997 Op. Cit.

[115] McGuffin M, Hobbs C, Upton R, Goldberg A, 1997 Op. Cit. Brinker F. Herb Contraindications and Drug Interactions. 2nd ed. Sandy, OR: Eclectic Medical Publications, 1998

[116] Dolara P et al. Characterization of the action of central opioid receptors of furaneudesma-1,3-diene, a sesquiterpene extracted from myrrh. Phytotherapy Research, 1996, 10:S81–S83.  Atta AH, Alkofahi A. Anti-nociceptive and anti-inflammatory effects of some Jordanian medicinal plant extracts. Journal of Ethnopharmacology, 1998, 60:117–124

[117] British herbal pharmacopoeia. Exeter, British Herbal Medicine Association, 1996.  Saha JC, Savini EC, Kasinathan S. Ecbolic properties of Indian medicinal plants. Part I. Indian Journal of Medical Research, 1961, 49:130–151.  Pernet R. Phytochimie des Burseraceae. [Phytochemistry of the Burseraceae.] Lloydia, 1972, 35:280–287.

Tidbits: cannabis

Nonostante parlare dell’utilizzo della Cannabis e dei suoi derivati come strumento per il trattamento del dolore cronico non sia più una eresia, rimane ancora difficile farlo con chiarezza e serietà e senza pregiudizi o stimmate apposte all’argomento. E’ quindi una buona notizia la pubblicazione di una review sul trattamento del dolore cronico, eseguita presso l’Università di Toronto.

La review ha considerato 18 studi clinici, diversi tipi di assunzione (cannabis fumata, estratti somministrati per via transdermica orale, analoghi del THC) e diversi tipi di dolore non legato a neoplasie (dolore neuropatico, fibromialgia, artrite reumatoide, dolore cronico di origine mista).

I risultati sono stati molto interessanti: la qualità degli studi esaminati è risultata in media eccellente (una rarità nel campo della ricerca su derivati vegetali), e 15 studi su 18 (l’83%) hanno mostrato risultati positivi per l’effetto analgesico. Un numero minore di studi ha mostrato effetti positivi sulla qualità del sonno, e comunque nessuno degli studi ha mostrato effetti collaterali particolarmente preoccupanti. I risultati migliori si sono visti con il dolore neuropatico, mentre gli effetti sono meno eclatanti per la fibromialgia e l’artrite reumatoide. Nonostante gli autori sottolineino che gli effetti, nei casi migliori, sono comunque risultati modesti, vale la pena ricordare che l’importanza di questi effetti va considerata nel contesto delle altre opzioni disponibili. Quando, come nel caso delle neuropatie, le altre opzioni (oppiacei, anestetici locali, antidepressivi) sono spesso non o poco utilizzabili o efficaci, anche una efficacia modesta è un’ottima notizia.

Rimane il fatto però che molti di coloro che utilizzano la Cannabis sativa come strumento terapeutico lo fanno non utilizzando farmaci a penetrazione transdermica orale (Sativex e simili) o i sistemi di evaporazione a basse temperature, bensì attraverso la combustione della pianta e resina secche. Di contro sono molti scarsi gli studi sugli effetti e l’efficacia della Cannabis assunta con l’inalazione del fumo.

Per questo è  interessante lo studio clinico randomizzato (e qui) sull’effetto analgesico della cannabis in casi di neuropatia cronica  eseguito da un gruppo di ricerca del McGill University Health Centre (MUHC) e della  McGill University.

I ricercatori hanno testato fumo di cannabis a tre livelli di THC: 2.5%, 6%e  9.4%. più un placebo allo 0%. I risultati sono stati anche in questo caso chiari: la dose di 25 mg al 9,4% di THC per tre volte al giorno per cinque giorni consecutivi ha portato ad una riduzione significativa dell’intensità media del dolore, la qualità del sonno è migliorata in maniera dose dipendente, l’ansia e la depressione si sono ridotte alla dose di THC pari al 9.4%

Oltre all’utilizzo della Cannabis e dei suoi derivati, i ricercatori da tempo cercano di utilizzare i cannabinoidi endogeni (endocannabinoidi), scoperti per l’appunto grazie alla ricerca sulla Cannabis, come farmaci. Il razionale è questo: lavorando sugli enzimi che degradano gli endocannabinoidi si cerca di aumentare la loro emivita aumentando quindi la loro azione ansiolitica e analgesica. Questa strategia ha funzionato per uno dei due endocannabinoidi principali, l’anandamide. Quando il suo enzima degradante, l’idrolasi delle ammidi degli acidi grassi (fatty acid amide hydrolase – FAAH) viene inibito i livelli di anandamide si elevano riducendo dolore ed infioammazione, e senza segnali di abituazione.

Diverso invece il discorso per quanto riguarda un altro endocannabinoide, il 2-arachidonilglicerolo (2AG), che sembrerebbe più promettente dell’anandamide, dato che la sua concentrazione cerebrale è naturalmente più elevata.  Infatti l’utilizzo di un bloccante selettivo dell’enzima che degrada il 2AG (la monoacilglicerolo lipasi – MAGL) porta ad un aumento dell’effetto analgesico di un fattore otto, effetto che però si riduce dopo sei giorni, e poirta a vari segnali di abituazione anche ad altre sostanze (THC e composti di sintesi con attività di legame ai recettori cannabinoidi CB1). Questi risultati implicano che a differenza dell’anandamide, il 2AG porta ad abituazione (e forse a dipendenza), probabilmente attraverso un meccanismo di downregolazione dei recettori CB1 in alcune aree del cervello.

Digestive Functional Foods 4

Dopo il post monografico, torniamo ad analizzare il dato etnobotanico. Nel seguente spezzone tento di riassumere parte dei dati etnobotanici più recenti relativi all’utilizzo dei cibi funzionali tradizionali latu sensu nei disturbi gastroenterici, cercando, quando possibile, di limitarmi a disturbi non specifici (indigestione, gonfiore, dispepsia, ecc.), e cercando di trarre qualche indicazione di massima sulla eventuale segregazione rtassonomica dei rimedi. Come vedrete le conclusioni sono chiare (ma con vari caveat): esistono poche famiglie nelle quali si concentrano molti dei rimedi, e questi rimedi sono caratterizzati molto spesso dalla presenza di principi amari, pungenti e/o aromatici.  Buona lettura!

——————————————————————————————-

Digestive Functional Foods in the ethnobotanical literature

The author compiled a non-systematic survey of FF plants used world-wide for digestive complaints, limiting, when possible, the analysis to plants used only for non specific gastrointestinal complaints, to remain coherent with the spirit of the FF definition. The plants listed were mainly used as digestives, appetite stimulants, antidyspepsics, carminatives, and antispasmodics. Plants with very specific activities (antiulcer) or with specific indications (IBS, etc.) were excluded, when possible.[1]

In a paper on edible plants of Palestine,[2] of the 103 edible plants, 64 (62 %) were used as food-medicines, and the two most important botanical families for food-medicines were Asteraceae and Lamiaceae.  This is in agreement with the findings of a similar study on food plant consumption in seven Mediterranean countries.[3]
Of the 78 alimentary species collected in Cyprus, 20 (25,6%) belonged to the Asteraceae, 7 each to Apiaceae and Brassicaceae, and 6 to the Lamiaceae. 40 were used only as food, and 37 (47,4%) as both food and medicine.[4]

In a study on Sicilian wild food plants, of the 188 food species recorded, 37 (19,6%) were used as both food and medicine, and of these 12 (32,4%) belonged to Asteraceae,  4 (11%) to Lamiaceae,  3 each to Brassicaceae and Apiaceae.[5]

In a review of plant foods as medicines in Mediterranean Spain, the authors found that  the percentage of edible plants used as medicines varied between 13,39 and 21,42 (17,52% on average), and that of spices and culinary herbs used as medicines varied between 5,74 and 9,25 (7% on average). All in all an average of around 24,5% of edible plants and spices were used as medicines.[6] Lamiaceae  and Asteraceae played major roles both in terms of recorded medicinal uses (146 the former and 57 the latter, of all 559 recorded uses) and of number of species used in medicinal treatments (42 the former and 29 the latter).

According to Rivera and coworkers, of the 145 wild gathered food species from Southern Spain, 81 (55,9%) are also used medicinally, and, more importantly, 61 (42%) are administered orally using the same plant part used in the culinary preparations.  This proportion was halved when examining   cultivated food species.[7]

In an ethnobotanical research in Kenya, the authors found that wild edible-medicinal plants represent  30,2% of all edible plants.⁠

The main datum that emerges from this exercise is the predominance of some taxa.

At a higher level the Family Asteraceae dominates with 41 citations of 25 different Genera, amongst which Matricaria, Sonchus and Artemisia are the most often cited.  The second Family by number of citations is that of Lamiaceae, with 24 citations of 16 different Genera, vastly dominated by Mentha and Ocimum.

Also important are the Apiaceae family with 12 citations of 12 Genera, Zingiberaceae (9 citations of 8 Genera) and Rutaceae (9 citations of 3 Genera, dominated by Citrus spp.).

As an aside, similar data emerge when we examine functional foods in general: a significant percentage, between 20 and 60% (average 40%) of edible wild plants is used in traditional societies as a medicine; and secondly, the family  Asteraceae seem to be the main source of medicinal plant species used by traditional societies (at least in the northern hemisphere) and one of the main sources of functional foods/medicinal foods/food medicines.[8]  Lamiaceae and Apiaceae are also very important in terms of number of species used.[9]
These taxa share a similar chemical make-up: they contain very salient organoleptic compounds, such as essential oils, resins and pungent compounds, and bitter compounds, mainly in the Asteraceae and Cucurbitaceae, usually showing low toxicity.

Similar results can be seen in wider reviews including medicinal plants stricto sensu:  still dominant is the triad of Asteraceae, Lamiaceae and Apiaceae, but with a high frequency of  Euphorbiaceae (8 citations of 4 Genera), Fabaceae (15 citations of 12 Genera) and Solanaceae: all families with a potentially more toxic chemical profile, containing irritant latex, toxic lectins and cyanide-producing molecules, often characterized by a strong bitter taste. ⁠.[10]

Bitters and Spices

The majority of the plants rich in essential oil and pungent compounds have been historically classified as spices.  For most of human history, spices have been a canonical example of a fluid entity shifting from the food to the medicine field: they were sold by grocers and spice merchants but also by apothecaries and physicians; they have been used extensively as ingredients in the preparations of dishes, usually accompanying and exalting the main food crops, while at the same time being consumed as infusions and decoctions, like many other medicinal plants. When used as foods, they were very rarely the main ingredient, and seldom provide high primary metabolite intake. Even when used as a medicine, their sensual, organoleptic quality played an important role, quite apart from their effective therapeutic quality.

In fact spices are more akin to medicinal foods that FF proper, and they were ascribed potent medicinal qualities well before empirical validations were available, most probably because they resemble the prototypical medicinal product: “they are specific (have unique and distinguishing tastes), small (in volume), and powerful (in the stimuli they emit and, in many cases, physiologic action)”.

The characteristic aroma and taste of spices is imparted by volatile essential oils and pungents (mono- and sesquiterpenes plus a few shikimic acid derivatives, plus thioethers in Alliaceae and isothiocyanates in Brassicaceae) and non volatile pungent compounds (mainly belonging to the acid amine group, like capsaicin in Capsicum and piperine in Piper).

Although very different from spices in term of economic and cultural importance, bitters too have a recognized place in many different cultures all over the world, in promoting the state of health. The almost universal use of bitter-tasting drinks as aperitif, digestives or fasting tools emphasizes this important role.[11]

Pungent, aromatic and bitter compounds do not exhaust the chemical variety of digestive FF, and their predominance cannot be taken without some caution. It is in fact probable that this predominance is due to many cultural, economical and social factors beyond the biological ones. Having said that, these compounds are extremely interesting because they seem to be able to act on gastrointestinal physiology before or even without systemic absorption, hence potentially with low toxicity profiles.
Moreover, in the last ten years research on gastrointestinal physiology has focused more and more on the health implications of tastants and olfactants, and this research has blended very well with the hypothesis of the coevolution of plant secondary compounds and human defense mechanisms.

——————————————————————————————–
[1] Dufour DL and Wilson WM “Characteristics of ‘wild’ plant foods used by indigenous populations in Amazonia” in Etkin 1994, Op. Cit.; Vickers WT “The health significance of wild plants for the Siona and Secoya” in Etkin 1994, Op. Cit.; Price LL “Wild food plants in farming environment”s in Pieroni and Price 2006 Op. Cit.; Pieroni, A. and Quave, C. “Functional foods or food medicines? On the consumption of wild plants among Albanians and Southern Italians in Lucania”  in Pieroni and Price 2006 Op. Cit.; de Santayana, M.P., San Miguel, E., Morales, R. “Digestive beverages as a medicinal food in a cattle-farming community in Northen Spain (Campoo, Cantambria)”.  in Pieroni and Price 2006 Op. Cit.; Volpato and Godinez 2006 Op. Cit.; Vanderbroek, I.,  Sanca, S. “Food medicines in the Bolivian Andes (Apillapampa, Cochabamba Department)” in Pieroni and Price 2006 Op. Cit.; Ladio 2006 Op. Cit.; Ogoye-Ndegwa, C., Aagaard-Hansen, J. “Dietary and medicinal use of traditional herbs among the Luo of Western Kenya” in Pieroni and Price 2006 Op. Cit.; Eddouks, M. “Aspects of food medicine and ethnopharmacology in Morocco” in Pieroni and Price 2006 Op. Cit.; Curtin 1997, Op. cit.; Quave, C.L. and Pieroni, A “Traditional health care and food and medicinal plants use among historic Albanian migrants and Italians in Lucania, Southern Italy”. in Pieroni & Vandebroek 2007, Op. Cit.; Ceuterick, Vandebroek, Torry, & Pieroni Op. Cit; Van Andel, T and van’t Klooster, C. “Medicinal plant use by Surinamese immigrants in Amsterdam, The Netherlands: Results of a pilot market study”. in Pieroni & Vandebroek 2007, Op. Cit; Lundberg, P.C. “Use of traditional herbal remedies by Thai immigrant women in sweden” in Pieroni & Vandebroek 2007, Op. Cit; Vandebroek, I., Balick, M.J., Yukes, J., Duran, L., Kronenberg, F., Wade, C., Ososki, A.L., Cushman, L., Lantigia, R., Mejia, M., Robineau, L. “Use of medicinal plants by Dominican immigrants in New York City for the treatment of common health conditions: A comparative analysis with literatue data from the Dominican Republic” in Pieroni & Vandebroek 2007, Op. Cit; Manandhar, N.P. Plants and people of Nepal. Timber Oress, Oregon, USA, 2002; Ruffo, Birnie, Tengnas 2002 Op. Cit.; Germosen-Robineau, L Farmacopea vegetal caribena. Ed. Universitaria TRAMIL, ENDA-Caribe, 1998; Lewis, W.H., Elwin-Lewis, M.P.F. Medical Botany: Plants affecting human health 2nd edition. Wiley and sons, London, 2003; Williamson, E.M. (Ed.) Major herbs of Ayurveda. Churchill Livingstone, London, 2002; Williamson, Yongping Bao, Chen, Bucheli  2004, Op. Cit.; Akerreta, S., Cavero, R.Y., Lopez, V., Calvo, M.I. “Analyzing factors that influence the folk use and phytonomy of 18 medicinal  plants in Navarra”. Journal of Ethnobiology and Ethnomedicine 2007, 3:16; Lans, C. “Comparison of plants used for skin and stomach problems in Trinidad and  Tobago with Asian ethnomedicine” Journal of Ethnobiology and Ethnomedicine 2007, 3:3; Tilahun Teklehaymanot, Mirutse Giday “Ethnobotanical study of Medicinal plants used by people in Zegie peninsula, Northwestern Ethiopia” Journal of Ethnobiology and Ethnomedicine 2007, 3:12; Bussmann, Sharon and Lopez 2007 Op. Cit.; John Warui Kiringe “A Survey of Traditional Health Remedies Used by the Maasai of Southern Kaijiado District, Kenya” Ethnobotany Research & Applications, 2006 4:061-073;
[2] Ali-Shtayeh et al., 2008
[3] Hadjichambis ACH, Paraskeva-Hadjichambi D, Della A, Giusti M, DE Pasquale C, Lenzarini C, Censorii E, Gonzales-Tejero MR, Sanchez- Rojas CP, Ramiro-Gutierrez J, Skoula M, Johnson CH, Sarpakia A, Hmomouchi M, Jorhi S, El-Demerdash M, El-Zayat M, Pioroni A: Wild and semi-domesticated food plant consumption in seven circum-Mediterranean areas. International Journal of Food Sciences and Nutrition; 2008, 59 (5):383-414
[4] Della, Paraskeva-Hadjichambi, & Hadjichambis, 2006
[5] Lentini & Venza, 2007
[6] Rivera & Obón, 1996
[7] Rivera et al. 2005, cited in Leonti, S Nebel, Rivera, & M Heinrich, 2006
[8] Leonti, S Nebel, Rivera, & M Heinrich, 2006
[9] Ali-Shtayeh et al., 2008; Hadjichambis ACH, Paraskeva-Hadjichambi D, Della A, Giusti M, DE Pasquale C, Lenzarini C, Censorii E, Gonzales-Tejero MR, Sanchez- Rojas CP, Ramiro-Gutierrez J, Skoula M, Johnson CH, Sarpakia A, Hmomouchi M, Jorhi S, El-Demerdash M, El-Zayat M, Pioroni A: Wild and semi-domesticated food plant consumption in seven circum-Mediterranean areas. International Journal of Food Sciences and Nutrition; 2008, 59 (5):383-414; Della, Paraskeva-Hadjichambi, & Hadjichambis, 2006; Lentini & Venza, 2007; Rivera & Obón, 1996; Rivera et al. 2005, cited in Leonti, S Nebel, Rivera, & M Heinrich, 2006
[10] (Liu, et al., 2009; Long, et al., 2009; Kala, 2005; Muthu, et al., 2006; Pradhan & Badola, 2008; Bussmann & Sharon, 2006; Volpato, et al., 2009; Luziatelli, et al., 2010; Lulekal, et al. 2008; Yineger, Yewhalaw, & Teketay, 2008; Teklehaymanot & Giday, 2007; Mesfin, Demissew, & Teklehaymanot, 2009; Bhattarai, Chaudhary, & Taylor, 2006)
[11] Mills, SY, Bone, K Principles and Practice of Phytotherapy: Modern Herbal Medicine. Churchill Livingstone, 2000; Scarpa A,  Guerci A Actes du 2e Colloque European d‘Ethnopharmacologie et de  la 1 le Conférence internationale d‘Ethnomédecine, Heidelberg. 1993, 30-33; Johns 1990 Op. Cit.

Digestive Functional Foods 3

Nella terza installazione digestiva ho deciso di scardinare l’ordine cronologico della discussione saltando ad una serie di minimonografie di piante con un certo bagaglio di letteratura sperimentale e clinica, e che, più o meno tirate per i tricomi, possono dirsi piante anche alimentari. Ci sarà tempo per ritornare a discorsi di ordine più teorico.

——————————————————————————————-

Cynara cardunculus subsp. cardunculus Hayek — Asteraceae

Native to the Mediterranean area; the basal leaves were used as medicine as far back as ancient Roman times. It was used, as was characteristic of bitter remedies, primarily as a digestive and liver aid, to help stimulate the appetite, provide relief from nausea, stomach ache, flatulence, and a sense of fullness. More recently it has been described as liver protective, a choleretic, and a cholagogue. As with many members of the Asteraceae, it contains bitter-tasting sesquiterpene lactones, although the most characteristic and active compounds are caffeoylquinic acids (e.g. chlorogenic acid; 1,5-dicaffeoylquinic acid, neochlorogenic acid, criptochlorogenic acid, plus cinarine – 1,3-dicaffeoylquinic acid – only in hot acqueous extracts) and flavonoids.

Various experimental studies have shown promising choleretic and digestive activities of the dry extract of artichoke leaves. Total extract, fenolic acids and caffeoylquinic acids all show choleretic effects both in vitro1 and in vivo2 and they increases gastrointestinal peristalsis.3

These experimental studies are partly supported by clinical investigations that have shown that artichoke preparations may relieve digestive complaints (sensation of fullness, loss of appetite, nausea and abdominal pain) through an increase in the formation and flow of bile, probably mainly due to the presence of flavonoids and caffeoylquinic acids, but also via the bitter-tasting sesquiterpene lactones.4 In fact, the German Commission E approves the use of fresh or dried artichoke leaf for dyspeptic problems due to its choleretic action,5 and the ESCOP monograph reports as indications digestive disorders such as stomachache, nausea, emesis, sensation of fullness, flatulence.6

A post-marketing surveillance study reported by Held7 included 417 patients with hepatic and biliary tract disease treated for four weeks with artichoke leaf extract (1% caffeoylquinic acids, 1500 mg/day). In 65-77 % of patients, abdominal pain, bloating, meteorism, constipation, lack of appetite, and nausea were eliminated after one week, and in 52-82% of patients, after four weeks.

A mode of action study (a crossover, randomized, double blind clinical study, vs. placebo, with one-day treatment periods separated by an eight-day washout period) using an aqueous dry extract (4.5-5:1) on 20 subjects with acute or chronic metabolic disorders, showed that administration of six capsules (total weight 1.92 g) intraduodenally caused a peak increase (100 to 150 % compared to baseline) in bile one hour later, which lasted for three hours. The study inferred, but did not demonstrate, therapeutic benefit for dyspepsia. It suffered from many shortcomings: the study was too short, the sample size was small, it wasn’t conducted on subjects with dyspepsia, and the product was not delivered orally.8

A second post-marketing surveillance study included 553 subjects with dyspepsia, who were administered an average of 1.5 g of dry extract (3.8-5.5:1) for an average of 43.5 days. There was a clinically relevant reduction in dyspeptic symptoms for 71% of the subjects in 6 weeks of treatment (66% flatulence, 76% abdominal pain, 82% nausea and 88% emesis).9

Walker, Middleton, and Petrowicz reported an analysis of a patient subset from the initial survey by Fintelmann and Menssen with key symptoms of irritable bowel syndrome (n=279). These patients experienced significant reductions in symptoms (emesis 95%, nausea 85%, abdominal pain 75%).10

In a similar open study that lasted six months on 203 subjects suffering from dyspepsia, there was an average reduction (after 21 days) of 66% of the same range of symptoms. The global efficacy was evaluated by the physicians as being good or excellent in 85.7% of the cases.11

In a more recent double-blind, randomized controlled trial vs. placebo on 244 patients with

functional dyspepsia, the verum treatment (1920 mg dry extract/die) improved/reduced? symptoms and improved quality-of-life measures after six weeks.12

In an open, dose-ranging postal study, 454 healthy patients with self-reported dyspepsia were treated with a dry extract, at 320 or 640 mg daily. Both dosages reduced all dyspeptic symptoms, with an average reduction of 40% in global dyspepsia score.13 A subset analysis of the study, identifying post hoc 208 subjects suffering with IBS, showed a significant fall in disease incidence of 26.4% after 2 months.14

Thirty subjects with functional dyspepsia consumed an iced dessert with or without artichoke extract. The results show that ingestion of the dessert induces a reduction of symptom severity and range even without the extract, but that the presence of the extract intensifies the effects.15

A prospective cohort study on 311 patients with functional dyspepsia analyzed the efficacy of a commercial mixture of dry extracts of artichoke leaf (15% of chlorogenic acid – 150 mg per capsule), dandelion radix (Taraxacum officinalis – 2% of inulin), turmeric rhizome (Curcuma longa – 95% of curcumin) and rosemary (Rosmarinus officinalis) microencapsulated essential oil. After 60 days of treatment, a statistically significant gradual reduction in symptom severity was noted, and a global clinical response, defined as a 50% reduction in the total scores of all symptoms, was recorded in 38% of patients at 30 days.16

Taraxacum officinale G.H. Weber ex F. H. Wigg — Asteraceae

A perennial weed widely distributed in the warmer temperate zones of the Northern Hemisphere. Its roots and rhizomes have been used extensively since ancient times in Europe as a bitter tonic and for the treatment of various disorders such as dyspepsia, heartburn, spleen and liver complaints, hepatitis and anorexia.17

The intensely bitter-tasting compounds are sesquiterpene lactones of the eudesmanolide, guaianolide and germacranolide types18 (previously known as taraxacin) and are unique to Taraxacum. The drug contains also triterpene alcohols (taraxastane-type), phytosterols , lupane-type triterpene and hydroxycinnamic acids.19

In Germany, Commission E supports using Taraxacum officinale folia to treat loss of appetite, dyspepsia, bloating and flatulence, while radix with folia is recommended to treat disturbed bile flow, loss of appetite and dyspepsia.20

ESCOP recommends T. officinale radix for restoring hepatic and biliary function, dyspepsia and loss of appetite.21

Intragastric administration of an aqueous or 95% ethanol extract of the whole plant (dose non specified) to rats increased bile secretion by 40% in over 2 hours.22

Dandelion decoction administered by injection to dogs doubled the volume of bile secreted.23 A similar effect was observed following intraduodenal administration to rats.24

An herbal combination containing Calendula officinalis, Taraxacum officinale, Hypericum perforatum, Melissa officinale and Foeniculum vulgare reduced intestinal pain in 96% of 24 patients by the 15th day in an uncontrolled trial involving patients with chronic colitis. Defecation was normalized in patients with diarrhea syndrome.25

A prospective cohort study on 311 patients with functional dyspepsia analyzed the efficacy of a mixture of dry extracts of artichoke leaf, dandelion radix, turmeric rhizome and rosemary essential oil. After 60 days of treatment, a statistically significant gradual reduction in symptom severity was noted; and a global clinical response – defined as a 50% reduction in the total scores of all symptoms – was recorded in 38% of patients at 30 days.26

Silybum marianum (L.) Gaertn. — Asteraceae

Plant indigenous to North Africa, Asia Minor and southern Europe, have been used since ancient times for the treatment of gastrointestinal and hepatic complaints like anorexia,27 colic and abdominal cramps,28 and nausea.29

It is nowadays mainly known for its important hepatoprotective and hepartoregenerative activity but, being a bitter remedy, it shows classic digestive activity, although the clinical evidence is lacking (Commission E recognizes this by suggesting its use as a treatment of dyspeptic complaints). The seeds contain a complex mixture of flavolignans termed silymarin, which seems to be the main active principle ingredient?.30 Other important compounds are the flavonoids quercetin, dehydroksampferol and (+)-taxifolin, saponins, poliacetylenes and essential oils.

An experimental study has shown that intragastric administration of an acetone extract of fruit containing silybin increased the volume and dry mass of excreted bile in rats.31

Although there are no direct clinical data, Silybum marianum has been tested in a fixed preparation combining Iberis amara, Melissa officinalis, Matricaria recutita, Carum carvi, Mentha x piperita, Glycyrrhiza glabra, Angelica archangelica, Silybum marianum and Chelidonium majus. This preparation has shown a general activity on dyspepsia,32 in particular: a reduced acid output, increased mucin secretion, prostaglandin E(2) release and a decrease in leukotriene levels.33 A second study showed protection against the development of gastric acidity rebound/reflux? and inhibited the serum gastrin level in rats.34

Citrus limon (L.) Burmann fil. — Rutaceae

The rind has been used both in the West and in the East as a tonic digestive, strongly aromatic and slightly bitter, used in decoction and alcoholic extracts. In Traditional Chinese Medicine it is used to resolve gastrointestinal disorders such as abdominal and epigastric bloating, belching, nausea and emesis, inappetence and diarrhea, and in the West for colicky indigestions, abdominal bloating, slow digestion, and nervous dyspepsia. The juice has traditionally been used as a digestive, astringent, stomachic, antispasmodic and carminative, used for the treatment of inappetence, gastralgy, nausea, and gastric acid reflux.35

The epicarp is very rich in an essential oil dominated by monoterpenes (60-95%) in particular R(+)-limonene (up to 70%), and linear aldheides (citrals), but also characterized by photoactive furocoumarins (more than 5%).36 Also present are phenolic compounds, flavonoids, pectin and various organic acids from the juice.37

Lemon juice and extracts exert both indirect and direct actions on gastrointestinal activity. Particularly interesting are the indirect (cognitive and sensory mediated) ones.

It is well known that both lemon aroma and flavor are sialagogues, that is, that they influence the cephalic phase of digestion (salivation). In an interesting study comparing the effects of different visual stimuli, Christensen and Navazech show that there is a stronger response (a higher salivary volume) to visual stimuli of acidic (lemon juice) and pungent foods (pizza with hot peppers).38 Lemon odor and the introduction of lemon juice into the oral cavity both cause an increase in the volume of saliva, statistically higher than that caused by a non-stimulus (pure air or pure water).39 Moreover, according to Davenport, the lemon juice seems to be able to influence not only the quantity but also the quality (in terms of compositions) of the saliva, which becomes richer in proteins.40 This suggests that prior knowledge of the food items can modify the cephalic phase of digestion, and reinforces the thesis of a relationship between secondary metabolites and gastrointestinal physiology: the presence or the supposed presence of possibly hazardous substances (irritant, bitter, astringents, etc.) not only alters the salivary volume but increases the percentage of compounds like praline, which offer a certain degree of protection from irritant compounds such as tannins.

The study by Bauslaugh showed a relationship between salivation and gastrointestinal motility during olfactory stimulation,41 and it is well known that pepsinogen, gastrin and HCl secretions are influenced by cephalic stimulations,42 hence possibly by the organoleptic stimulation by lemon juice.

The palatability and the absence of gastrointestional adverse symptoms have already been tested in a commercial product containing lemon juice and various herb extracts.43

Apart from sensory, indirect activities, lemon juice can directly affect gastrointestinal secretions. 100 ml. of orange and lemon juice have shown very potent stimulant action on pancreatic secretion (higher output, higher bicarbonate content, higher enzymatic content), compared to other stimuli, and the peak response was observed earlier (60 minutes for the juice, 90 minutes for the other stimuli). In general the juice had a response quantitatively and qualitatively comparable to secretin.44

The fruit juice and some of its components (caffeic acid, ferulic acid, hesperidine, p-coumaric acid) show choleretic/cholagogue and antispasmodic action.45

The essential oil and many of its components are rubefacient46 and stimulant carminative;47 limonene is myorelaxant and antispasmodic at high doses, as are many of the other essential oil components: a-pinene, a-terpinene, bergapten, b-pinene, cariophillen, geraniol, mircene, nerale, terpinen-4-olo.48 Hence, they may? could play a role in the antispasmodic and carminative activity of lemon rind extract and lemon juice.

Pectin shows stomachic action and gastrointestinal protective activity.49

Foeniculum vulgare Mill. — Apiaceae

Commonly employed as a culinary herb and as a remedy to improve digestion in traditional systems of medicine; they have been used since ancient Roman and Egyptian times as a valuable warming carminative and aromatic digestive. Fennel has? also had a persistent/consistent reputation as an ingredient in “gripe water” and other remedies for infant colic.

Given in the form of a homemade tea or infusion, fennel is a useful standby for dyspepsia, bloating and flatulence, and poor appetite.50

It contains an essential oil mainly composed of trans-anethole (30-90%), (+)-fenchone (6-30%) and estragole (methylchavicol – ca. 5% ); and also contains flavonoids and coumarines.

Only a handful of modern clinical trials are reported in the literature, demonstrating – together with its widespread traditional use – a reduction in colic in babies, and a reduction in the symptoms of chronic colitis.

A randomized placebo-controlled trial tested a fennel seed oil emulsion, compared with placebo, on 125 infants, 2 to 12 weeks of age, diagnosed with colic. The emulsion eliminated colic in 65% of infants in the treatment group, compared to 23.7% of infants in the control group with an Absolute Risk Reduction (ARR) = 41%.51

A mixture containing chamomile (Matricaria recutita), fennel (Foeniculum vulgare) and lemon balm (Melissa officinalis) was found to have significant benefits in the treatment of infantile colic in a double-blind, placebo-controlled study on 93 breastfed infants, treated twice a day for 1 week. Crying time reduction was observed in 85.4% of subjects.52

However, two subsequent experimental studies in mice, while confirming the reduction of intestinal motility at dosages similar to those used in human trials, showed that the major contribution to the antispasmodic activity is due to Matricaria recutita and Melissa officinalis.53

In an uncontrolled clinical study twenty-four patients with chronic non-specific colitis were treated with a herb combination of Taraxacum officinale, Hipericum perforatum, Melissa officinaliss, Calendula officinalis and Foeniculum vulgare. As a result of the treatment, the spontaneous and palpable pains along the large intestine disappeared in 95.83 per cent of the patients by the 15th day of their admission to the clinic.54

Backed by weaker clinical evidence, but supported by very widespread and validated traditional use, are the indications for digestive complaints: dyspepsia with bloating and flatulence, poor appetite and indigestion.55

In animal studies, fennel has been shown to be antispasmodic, prokinetic and secretagogue.

Isolated trans-anethole reduced contractions of a rat diaphragm preparation;56 the essential oil seems able to reduce smooth muscle spasms in various in vitro models,57 but this activity seems concentration -dependent, with spasmogenic effect at lower doses, and spasmolytic at higher ones.58

The ethanol extract59 and the aqueous infusion show60 spasmolytic effects.

Intragastric administration of 24.0 mg/kg bw of the fruits increased spontaneous gastric motility in unanaesthetized rabbits.61

An aqueous extract of the fruits (10% p/v), administered to anaesthetized rats via gastric perfusion at 0.15 ml/minutes, significantly increased gastric acid secretions.62

The admixture of 0.5% fennel fruits to the diet of rats for 6 weeks reduced the food transit time by 12%,63 while the admixture of fennel fruits (0.5%) and mint (1%) for 8 weeks stimulated a higher rate of secretion of bile acids in rats, and a significant enhancement of secreted intestinal enzymes, particularly lipase and amylase.64

Melissa officinalis L. — Lamiaceae

A very popular traditional herb used in infusion for restlessness and dyspepsia, especially among children. It contains very low amounts of essential oil (0.02-0.37%), organoleptically characterized by the aldheydes geranial and neral, and 6% of rosmarinic acid.

There is a dearth of clinical research on the digestive activity of Lemon balm, and the only two existing clinical studies are based on formulas and not on the single herb extract.

A randomized, double-blind, placebo-controlled trial showed significant improvement of colic in babies given a chamomile, fennel and lemon balm preparation compared with babies given a placebo.65

A fixed commercial combination of extracts of Melissa officinalis, Mentha spicata and Coriandrum sativum was tested on 32 irritable bowel syndrome patients and compared to placebo for 8 weeks in a clinical study. The study shows that the combination reduces the severity and frequency of abdominal pain and of bloating better than placebo.66

There is little doubt that the ethanol fraction of the plant, and in particular the volatile oil component, is responsible for the antispasmodic activity of the herb. The ethanol extracts and the essential oil have shown inhibition of artificially-induced contraction of smooth muscles,67 but there are also contrasting data.68 The essential oil was more effective than its isolated components, but it has been observed that neral and geranial were more active than citronellal and β-cariophillen.69

Mentha xpiperita L. — Lamiaceae

Without doubt one of the most world-renowned aromatic plants, and the most important one in terms of annual production, both of the dried herb and essential oil. It has always been used in traditional learned and folk medicine as a carminative, antispasmodic, antiemetic and digestive, both in the West and in the East.

It contains a large amount of essential oil characterized by the presence of a monoterpene alcohol, menthol, which is responsible for many of the activities of the herb and for its characteristic aroma. It also contains flavonoid compounds and hydroxycinnamic compounds.70

Peppermint has also been the focus of a fair amount of good quality research, both experimental and clinical, that supports many of the traditional claims. In particular it has shown antispasmodic, carminative and choleretic activities.

The essential oil reduces intracolonic pressure.71 In an open study of 20 patients, peppermint essential oil used alongside a colonoscope relieved colonic spasms,72 and it had the same effect when administered with barium enemas.73

The essential oil is also able to reduce tension in hypertonic intestinal smooth muscles? in cases? of IBS.74

In healthy volunteers, intragastric administration of a dose equivalent to 180 mg peppermint oil, reduced intraesophageal pressure within 1-7 minutes of infusion.75

Oral administration of the essential oil delayed the gastric emptying time in healthy volunteers and in patients with dyspepsia,76 and it slowed small intestinal transit time in 12 healthy volunteers.77

A combination of essential oils (90 mg of peppermint and 50 mg of caraway in an enteric-coated capsule) was tested in various studies.

The combination produced smooth muscle relaxation of stomach and duodenum;78 in a double-blind, placebo-controlled multicentre trial with 45 patients it improved symptoms of dyspepsia, reducing pain in 89.5% of patients and improving Clinical Global Impression scores in 94.5% of patients.79

The same combination tested on 223 dyspeptic patients in a prospective, randomized, reference and double-blind controlled multicentre trial, significantly reduced pain,80 and tested on 96 outpatients with dyspepsia, significantly reduced pain by 40% and reduced sensations of pressure, heaviness and fullness.81

The formula was shown to be as effective as Cisapride in reducing both the magnitude and frequency of pain,82 and it had a relaxing effect on the gall bladder.83

In a systematic review of herbal medicines for functional dyspepsia, the authors found 17 randomized clinical trials, nine of which involved peppermint and caraway combination preparations. Symptoms were reduced by all treatments; 60- 95% of patients reported improvements in symptoms.84

The essential oil and fractions of it have been shown to have gastrointestinal smooth muscle relaxant activity and to inhibit spontaneous smooth muscle contractions both in vitro and in vivo.85 Some data are also available on the antispasmodic effects of the ethanol extract, as well as flavonoids isolated from the leaf.86

The carminative activity of peppermint is, in fact, probably due to a relaxing action on the gastrointestinal sphincters,87 and to a reduction of the volume of intestinal gas by the antimicrobial, anti-fermentative and antifoaming effects of the essential oil.88

Choleretic activity (increased bile secretion and increased synthesis of bile acids) has been demonstrated in animal models for the herb, various flavonoid fractions, flavomentin, the essential oil and menthol.89 The effect probably derives from the spasmolytic activity of menthol and other terpenes on the Oddi’s sphincter.90

The essential oil seems to be acting by interacting with smooth muscle Ca channels probably by inhibiting the influx of extracellular Ca ions without effects on their intracellular mobilization, and menthol has been isolated as the most important compound.91

The antiemetic and prokinetic effects of peppermint oil and of (-)-menthol are due at least partly to their binding to the 5-HT(3) receptor ion-channel complex, in a manner similar to that of ginger.92

Matricaria chamomilla L. — Asteraceae

It has been a highly popular family herb since antiquity, generally used for nervous excitability and digestive disorders, stomach cramping, dyspepsia and flatulence. This tradition of use notwithstanding, much of the research data concentrate on antinflammatory and vulnerary activity.

However, its antispasmodic and relaxant effects provide a theoretical basis for its use in gastrointestinal conditions, and the German Commission E approves chamomile for gastrointestinal spasms and inflammatory diseases of the gastrointestinal tract.

It contains an essential oil, flavonoids (in particular apigenin and its related flavonoid glycosides), and proazulenes (sesquiterpene lactones) including matricin, matricarin and desacetlymatricarin.93

Although a well-known and widely used herb, almost no substantial clinical research exists into the remedy’s use for digestive disorders, and only a few well designed clinical studies are available There are however some experimental studies pointing to antispasmodic activity of the plant and its constituents on smooth muscle.

In an open, multicentre study, 104 patients with gastrointestinal complaints (gastritis, flatulence and mild intestinal spasms) were treated for 6 weeks with an oral chamomile extract (standardized for 0.05% alpha-bisabolol and 0.15% apigenin-7-glucoside), with 44.2% of subjects self-reporting symptom free.94

In a double-blind study, a herbal decoction (150 mL/day containing Matricaria chamomilla, Verbena officinalis, Glycyrrhiza glabra, Foeniculum vulgare and Melissa officinalis) was tested for seven days on 68 healthy infants with colic. 57% of the infants experienced relief compared to 26% in the placebo group.95

In another trial – prospective, double-blind and randomized – a preparation containing chamomile extract and pectin was tested on children aged 6 months to 5.5 years with uncomplicated diarrhea. The preparation reduced duration and severity of diarrhea significantly faster than the placebo.96

Whole extracts and isolated components demonstrate a dose-dependent antispasmodic effect in vitro.97 The major activity was related to (-)-α-bisabolol, the cis-spiroethers,98 and the flavonoids (in particular apigenin).99 Bisabolol oxides A and B, the essential oil, other flavonoids and the small amount of coumarins were less active in vitro.100

The mechanisms for chamomile antispasmodic activity are still unclear. However, at least one mechanism has been proposed: the inhibition of cAMP- and cGMP-phosphodiesterases by flavonoids.101

Chamomile also increases production of bile by the liver.102

Cymbopogon citratus (DC.) Stapf. — Poaceae

An aromatic tropical grass, whose essential oil is characterized by the presence of citrals (up to 90%) and monoterpenes. It also contains triterpenoids and flavonoids. It has been traditionally deemed a carminative, a light sedative, an analgesic, an antiemetic and an antispasmodic.103

It is most frequently used as a remedy for gastrointestinal disorders, in particular stomachache, acids indigestion, abdominal cramps, diarrhea, and dyspepsia.104

There are, however, no clinical data available, and only a few experimental data showing that di essential oil is strongly antispasmodic and carminative.105

Aloysia citrodora Palau — Verbenaceae

Used in Latin America, USA and Europe as an aromatic ingredient in fruit salads, jams, cold drinks or as an infusion.106 The plant is rich in an essential oil dominated by citrals. It also contains flavonoids, phenolic acids and tannins.107

Various authors report its digestive,108 spasmolytic,109 stomachic,110 and carminative activity,111 and it has been used for gastrointestinal and spasmodic disorders, e.g. flatulence, dyspepsia, colic, nausea, etc.112

There are, however, no clinical data in support of these claims, but there are some experimental data.

The essential oil and many of its components are aperitive, analgesic/antinociceptive, and antispasmodic.113 . Cineole and borneol are choleretics and secretagogues.114

Chlorogenic acids could act synergistically with the essential oil as digestives, and vitexin shows an antispasmodic activity.115

Caceres reports of a clinical study (impossible to track down) which allegedly shows a positive effect of the plant on inappetence, slow digestion, gastralgy and emesis.116

Illicium verum, Hook. f. — Illiciaceae and Pimpinella anisum L. — Apiaceae

Both popular aromatic remedies: the first in China, where it is a component of the very famous five spice powder, together with cinnamon/cassia, cloves, fennel and Sichuan pepper; and the second in Europe and North America. Both are used quite often in food recipes (Star Anise in garam masala spice blends and the rice dish biriyani, and Aniseed in many flavored drinks)

These two fruits are deemed carminative and stomachic and they are taken internally in the treatment of abdominal pain and digestive disturbances. They are often included in remedies for indigestion, and they are believed to be effective for children’s digestive upsets, including colic pain.117 Some people chew the fruits after meals for better digestion. The essential oils are used as a stimulant, stomachic, carminative.

Star Anise is characterized by its essential oil content, particularly rich in prenylated C6-C3 compounds (phenylpropanoids: anethole and its analogues, estragole, eugenol), but contains also neolignans and sesquiterpenes in addition to several common flavonoids, diterpenoids and triterpenoids.118

Aniseed contains an essential oil whose major component is trans-anethole.

Their traditional use notwithstanding, there is no clinical evidence supporting it, but there are limited experimental data. The essential oil of Aniseed and trans-anethole both seem to act as antispasmodics in vitro and in vivo on animal models. They antagonize artificially-induced spasms and decrease the rate and extent of contractions of smooth muscle preparations,119 possibly via Ca-channel blockage and the NO-cGMP pathway.120 Many authors point to antispasmodic,121 carminative122 and digestive activities,123 suggesting use for abdominal colic, inappetence, dyspepsia, flatulence.

Zingiber officinale Roscoe — Zingiberaceae

Probably one of the oldest domesticated spices in human history. It has a prominent role in Asian systems of medicine where it is used for the treatment of dyspepsia, flatulence, colic, vomiting, diarrhea, spasms and to stimulate the appetite, but over the centuries has become part of western cuisine and pharmacopoea as well.124

The ginger rhizome contains an essential oil (1-4%) and a resin, known collectively as oleoresin. The chief constituents of the essential oil are the sesquiterpenes a-, and b-zingiberene, which are responsible for the characteristic aroma. The resin contains pungent phenolic compounds called gingerols, gingerdioles and gingerdiones, and their corresponding dehydration products known as shogaols.125

According to the studies, ginger exerts several effects in the gastrointestinal tract: secretagogue (saliva, bile, pancreatic juices, gastric juices), antiemetic, intestinal antispasmodic and gastric prokinetic.

It stimulates the flow of saliva, bile and gastric secretions.126 An extract containing the oleoresin and administered intraduodenally to rats produced an increase in the bile secretion, while the aqueous extract was not active. These results point towards the oleoresin as the active principle, and in fact it was shown that [6]- gingerol and [10]-gingerol were mainly responsible for the cholagogic effect.127 An oral dose of ginger enhanced rat pancreatic lipase, sucrase and maltase activity, and stimulated trypsin and chymotrypsin.128

The essential oil,129 a 95% ethanol extract,130 a hot water extract131 and of a formula containing ginger, Pinellia ternata, Citrus aurantium, Pachyma hoelen, and Glycyrrhiza glabra,132 were all shown to possess antispasmodic activity on intestinal smooth muscles.

The rhizome extract, shogaols and gingerols all increased gastric motility in animal models and in humans.

In a clinical study ginger, assumed before meals, increased number and frequency of contractions in the corpus and in the antrum, and frequency of contractions in the duodenum. Assumed after meals, it contributed to motility to a lesser degree.133

Ginger and a Japanese formula (Dai-Kenchu-To) containing ginger, Zanthoxylum fruit and ginseng root, both induced phasic contractions in the gastric antrum..134

Previous clinical data had shown that ginger did not affect the gastric emptying rate.135 There were suggestions, however, that this lack of activity was due to low dosage of ginger rhizome.

The prokinetic activity was confirmed in other in vitro and in vivo tests, that showed that ginger extract enhances the intestinal transit of charcoal meal and that it acts through a spasmogenic, dose-dependant cholinergic agonistic effect on the post-synaptic muscarinic M3 receptors in the stomach fundus. It also has a possible inhibitory effect on pre-synaptic muscarinic autoreceptors. At the same time it shows spasmolytic activity at the intestinal level (also possessed by 6-shogaol, 6-gingerol, 8-gingerol and 10-gingerol), probably through a Ca2 + antagonist effect.136

Various constituents found in Ginger, 6-, 8- and 10-gingerol, 6-shogaol, and galanolactone, act as serotonin receptor antagonists, which could explains the antispasmodic effects on visceral smooth muscle.137 They could exert their effect by binding to receptors in the signal cascade behind the 5-HT(3) receptor ion-channel complex, perhaps substance P receptors or muscarinic receptors.138

At the same time two compounds (10-shogaol and 1-dehydro-6-gingerdione), and particularly the whole lipophilic extract, have shown to partially activate the 5-HT(1A) receptor (20-60% of maximal activation).139

The serotonin receptor antagonist activity may partly explain the antiemetic effect of ginger, since these receptors do mediate peristalsis and emesis,140 and the constituents active on these receptors were also active as anticholinergic antiemetics, in the following descending order of potency: 6-shogaol> or= 8-gingerol>10-gingerol> or = 6-gingerol.141

Many clinical studies have shown the positive antiemetic effects (prevention and treatment of nausea) of Ginger and many of its constituents (shogaols, gingerols, zingerones) under different circumstances.142

A systematic review of six controlled studies found that Ginger was more effective than placebo in some studies of postoperative nausea and vomiting. Of the three studies conducted in postoperative nausea and vomiting, two suggested that Ginger was superior to placebo and equally as effective as metoclopramide, whereas one found no benefit.143

A recent Cochrane review on 20 trials concluded that Ginger might be of benefit in cases of nausea and emesis, but that the evidence to date was weak.144

Capsicum annuum L. — Solanaceae

A native American plant that has been exported all over the world and has conquered both the cuisine and the medicine of Europe, Africa and Asia, in a very interesting reverse spice journey.

Capsicum’s main active chemical group is that of the capsaicinoids, a group of pungent alkaloids whose prototype is capsaicin (8-methyl-N-vanillyl-6-nonenamide), which has been tested for its analgesic effect.145

The scientific evidence about capsicum and capsaicinoids and their effects on the gastrointestinal tract is rather contrasting. It is well known that capsaicin can interact with the vanilloid receptor VR1 and that this interaction can lead to direct and indirect effects. The interaction causes a selective impairment of the activity of nociceptive C-type fibers carrying pain sensations to the central nervous system, causing, on chronic dosage, analgesic and anti-inflammatory effects.146 These have been evaluated in patients suffering from heartburn147 and functional dyspepsia, with encouraging results.148

The data on gastric secretions and motility are less clear: some studies found a stimulation of gastric emptying149 and of secretions,150 others found no difference,151 and others even found a reduction in activity.152

The intake of red pepper has caused a reduced energy intake, suppression of hunger and increased satiety,153 an activity in line with a possible effect on the secretion of CCK.

Carica papaya L. — Caricaceae

A tropical plant original to the dry flatlands of Mesoamerica (South Mexico and Guatemala). The fruit is one of the most important fruits in the tropics and worldwide, and its fermented products are well known in the field of FF for its antioxidant properties.154 Its juice and jams made out of the fruit pulp are used also for digestive complaints (constipation, diarrhea, dyspepsia, enteritis), and it is supposed to possess carminative, cholagogue and digestive activities.155 It contains various proteolytic enzymes like papaine and chymopapaine; carotenoids, monoterpenoids; and organic acids.156

Papaine is a proteasis (similar to bromelin) with wide-range specificity, it hydrolyses polypeptides, amides and esters, particularly when used in an alkaline environment, and is used in digestive disorders; chymopapaine is very similar but less active. Although the mature fruit is less rich in papaine than the unripe one, the quantity is still sufficient to give a biological bases to the traditional digestive claims for the fruit and its derivatives.

——————————————————————————————-

Note

1 ESCOP Monographs on the medicinal uses of plant drugs. Devon, European Scientific Cooperative on Phytotherapy, 2003

2 Preziosi P, Loscalzo B “L’azione sulla coleresi, sul colesterolo ematico e sulla lipoidosi colesterolica del principio attivo del carciofo e di sostanze ad esso correlate”. Fitoterapia. 1956; 27:666-72; Bombardelli E, Gabetta B, Martinelli EM, “Gas-liquid chromatographic and mass-spectometric investigation of Cynara scolymus extracts”. Fitoterapia. 1977; 48:143-152.

3 Lietti A. “Choleretic and cholesterol lowering properties of two artichoke extracts”. Fitoterapia. 1977; 48:153-58

4 Kraft K “Artichoke leaf extract–Recent findings reflecting effects on lipid metabolism, liver and gastrointestinal tracts”. Phytomedicine. 1997; 4 (4): 369-378; Wegener T, Fintelmann V. “Pharmacological properties and therapeutic profile of artichoke (Cynara scolymus L.)”. Wien Med Wochenschr. 1999;149(8-10):241-7.

5 Blumenthal M, Busse W, Hall T, Goldberg A, Gruenwald J, Riggins C, Rister S, eds. The Complete German Commission E Monographs: Therapeutic Guide to Herbal Medicines. Trans. S Klein. Austin, TX: American Botanical Council, 1998

6 ESCOP 2003 Op. Cit.

7 Held C “Artischoke bei Gallenwegsdyskinesien: Workshop “Neue Aspekte zur Therapie mit Choleretika.” Kluvensiek. 1991; 2: 9. Cited in Kraft 1997 Op. Cit.

8 Kirchhoff R, Beckers CH, Kirchhoff GM, Trinczek-Gartner H, Petrowicz O, Reimann HJ “Increase in choleresis by means of artichoke extract”. Phytomedicine. 1994; 1: 107-115

9 Fintelmann V. “Antidyspeptische und lipidsenkende Wirkungen von Artischockenextrakt: Ergenbnisse klinischer Untersuchungen zur Wirksamkeit und VertraNglichkeit von Hepar-SL forte an 553 Patienten”. Zeitschrift fur Allgemeinmedizin. 1997; 72 (Suppl. 2): 3-19. Cited in Kraft 1997 Op. Cit.; Fintelmann V, Menssen HG. “Aktuelle Erkenntnisse zur Wirkung von ArtischockenblaNtterextrakt als Lipidsenker und Antidyspeptikum”. Deutsche Apotheker-Zeitung. 1996; 136: 1405. Cited in Kraft 1997 Op. Cit.;

10 Walker AF, Middleton RW, Petrowicz O “Artichoke leaf extract reducessymptoms of irritable bowel syndrome in a post-marketing surveillance study”. Phytotherapy Research. 2001; 15 (1): 58-61

11 Fintelmann V, Petrowicz O Naturamed. 1998; 13:17-26

12 Holtmann G, Adam B, Haag S, Collet W, Grunewald E, Windeck T. “Efficacy of artichoke leaf extract in the treatment of patients with functional dyspepsia: a six-week placebo-controlled, double-blind, multicentre trial”. Aliment Pharmacol Ther. 2003 Dec;18(11-12):1099-105

13 Marakis G, Walker AF, Middleton RW, Booth JC, Wright J, Pike DJ. “Artichoke leaf extract reduces mild dyspepsia in an open study”. Phytomedicine. 2002 Dec;9(8):694-9.

14 Bundy R, Walker AF, Middleton RW, Marakis G, Booth JC. “Artichoke leaf extract reduces symptoms of irritable bowel syndrome and improves quality of life in otherwise healthy volunteers suffering from concomitant dyspepsia: a subset analysis” J Altern Complement Med. 2004; Aug;10(4):667-9)

15 Gasbarrini G, Zaccone V, Covino M, Gallo A. “Effectiveness of a “cold dessert”, with or without the addition of a mixture of digestive herbs, in subjects with “functional dyspepsia” J Biol Regul Homeost Agents. 2010; Jan-Mar;24(1):93-8

16 Sannia A. “Phytotherapy with a mixture of dry extracts with hepato-protective effects containing artichoke leaves in the management of functional dyspepsia symptoms”. Minerva Gastroenterol Dietol. 2010 Jun;56(2):93-9

17 Schutz K, Carle R, Schieber A. “Taraxacum–a review on its phytochemical and pharmacological profile”. J Ethnopharmacol. 2006; Oct 11;107(3):313-23; Guarrera PM. “Traditional phytotherapy in Central Italy (Marche, Abruzzo, and Latium)”. Fitoterapia. 2005; Jan;76(1):1-25

18 Hansel R, Kartarahardja M, Huang JT, Bohlmann F. “Sesquiterpenlacton-beta- D-glucopyranoside sowie ein neues Eudesmanolid aus Taraxacum officinale“. Phytochemistry. 1980; 19:857-861; Zielinska, K. and W. Kisiel. “Sesquiterpenoids from roots of Taraxacum laevigatum and Taraxacum disseminatum“. Phytochemistry. 2000; 54: 791-794

19 Hansel et al. 1980 Op. Cit.; Rauwald H-W, Huang JT. (1985) “Taraxacoside, a type of acylated gamma-butyrolactone glycoside from Taraxacum officinale“. Phytochemistry. 1985; 24:1557-1559; Williams CA Goldstone F Greenham J “Flavonoids, cinnamic acids and coumarins from the different tissues andmedicinal preparations of Taraxacum officinale“. Phytochemistry. 1996; 42(1):121-7

20 Blumenthal et al 1998 Op. Cit.

21 ESCOP 2003 Op. Cit.

22 Bohm K “Studies on the choleretic action of some medicinal plants” Arzneimittelforschang. 1959; 9:376-378

23 ESCOP 2003 Op. Cit.

24 ESCOP 2003 Op. Cit.

25 Chakurski I, Matev M, Koichev A, Angelova I, Stefanov G. “Treatment of chronic colitis with an herbal combination of Taraxacum officinale, Hypericum perforatum, Melissa officinalis, Calendula officinalis and Foeniculum vulgare“. Vutr Boles. 1981; 20:51-54.

26 Sannia A. 2010 Op. Cit.

27 Fleming, T. et al. PDR for Herbal Medicine, 1st ed., Medical Economics Co., Montvale, NJ, 1998

28 Blaschek W et al., eds. Hagers Handbuch der pharmazeutischen Praxis. Folgeband 2: Drogen A-K, 5th ed. Berlin, Springer-Verlag, 1998

29 Mills, Bone, 2000 Op. Cit.; Morazzoni P, Bombardelli E. “Silybum marianum (Carduus marianus)”. Fitoterapia. 1995; 66:3-42. , Blumenthal et al. 1998 Op. Cit.; WHO WHO Monographs on Selected Medicinal Plants. 2 vol. Geneva: World Health Organization; 2002, 300-316

30 Saller R, Meier R, Brignoli R. “The use of silymarin in the treatment of liver diseases”. Drugs. 2001; 61:2035-2063)

31 Danielak R, Popowska E, Borkowski B. “The preparation of vegetable products containing isofraxidin, silibin, and Glauciumalkaloids and evaluation of their choleretic action”. Polish Pharmacology and Pharmacy. 1973; 25:271-283

32 Buzzelli G, Moscarella S, Giusti A et al. “A pilot study on the liver protective effect of silybin-phosphatidylcholine complex (IdB1016) in chronic active hepatitis”. Int J Clin Pharmacol Ther Toxicol. 1993; 31:456-460

33 Khayyal MT, el-Ghazaly MA, Kenawy SA, Seif-el-Nasr M, Mahran LG, Kafafi YA, Okpanyi SN. “Antiulcerogenic effect of some gastrointestinally acting plant extracts and their combination”. Arzneimittelforschung. 2001; 51(7):545-53

34 Khayyal MT, Seif-El-Nasr M, El-Ghazaly MA, Okpanyi SN, Kelber O, Weiser D. “Mechanisms involved in the gastro-protective effect of STW 5 (Iberogast) and its components against ulcers and rebound acidity”. Phytomedicine 2006; 13 Suppl 5:56-66

35 Caceres, A Plantas medicinales de Guatelama. Editorial Universitaria Universidad de san carlos de Guatemala; 1996; Roersch, C. & Van der Hoogte L. Plantas medicinales del surandino del Perú. Ed. Centro de Medicina Andina. Cuzco, Perú., 1988 pp. 104-115; Khare C.P. (Ed.) Indian Medicinal Plants Springer Science, New York, 2007.

36 Dugo P., Mondello L., Cogliandro E., Cavazza A.& Dugo G. “On the genuineness of citrus essential oils. Part LIII. Determination of the composition of the oxygen heterocyclic fraction of lemon essential oils (Citrus limon (L.) Burm. F.) by normal-phase high performance liquid chromatography” Flav & Frag J. 2000; 13(5), 329-334; Naganuma M., Hirose S., Nakayama Y., Nakajima K. & Someya T. “A study of the phototoxicity of lemon oil.” Arch Dermatol Res. 1985; 278(1), 31-6; McHale D. & Sheridan J.B. “Detection of adulterated cold-pressed lemon oil.” Flav. & Frag. J. 1988; 3, 127-133.

37 Khare 2007 Op. Cit.; Manthey JA, Grohmann K. “Phenols in citrus peel by products. Concentrations of hydroxycinnamates and polymethoxylated flavones in citrus peel molasses”. J Agric Food Chem. 2001; 49(7):3268-73; Sultana S, Ali M, Ansari SH, Bagri P. “New 4′-substituted flavones from the fruit peels of Citrus limon (L.) Burm.f.” J Asian Nat Prod Res. 2008;10(11-12):1123-7; Schröder R, Clark CJ, Sharrock K, Hallett IC, MacRae EA. “Pectins from the albedo of immature lemon fruitlets have high water binding capacity”. J Plant Physiol. 2004; 161(4):371-9

38 Christensen CM, Navazesh M. “Anticipatory salivary flow to the sight of different foods”. Appetite. 1984; Dec;5(4):307-15

39 Davis CM, Wintrup, A, Gaetz M, Hickenbottom S, Bauslaught T “Human salivary responses to olfactory stimulation measured by the Surface method”. Canadian Psychology. 1993; 34(2a): 231; Bauslaugh T Non-invasive measurement of parotid salivary activity and stomach motility. University Master Thesis, Simon Fraser University, 1994; Bauslaugh, T e Davis CM “Measuring human salivary activity noninvasively: validation of the surface electrosalivary measure”. Canadian Psychology. 1993; 34(2a): 231

40 Davenport H. W. Physiology of the Digestive Tract, 5th ed., Year Book Medical Publishers, Chicago, 1982

41 Bauslaugh T 1994 Op. Cit.

42 Bonfils, S, Mignon,M. & Roze, C. “Vagal control of gastric secretion” In International Review of Physiology; Gastrointestinal Physiology. University Park Press, Baltimore, 1979; pp. 59-106; Konturek, S. ]., Kwiecien, N., Obtulowicz, W., Mikos, E., Sito, E., Oleksy,J. & Popiela,T. “Cephalic phase of gastric secretion in healthy subjects and duodenal ulcer patients: role of vagal innervation”. Gut. 1978; 20: 875-881; Sharon A. Gidaœ, CK,Rose M. Threatte e Morley R. Kare “Cephalic reflexes: Their role in digestion and possible roles in absorption and metabolism” J. Nutr. 1987; 117: 1191-1196

43 Gasbarrini G, Gallo A, Nicoletti M, Montalto M, Addolorato G. “Evaluation of effects (symptoms and palatability) after ingestion of “Gran Soleil” in healthy volunteers”. J Biol Regul Homeost Agents. 2008; 22(3):201-5; Gallo A, Gasbarrini G, Nicoletti M, Montalto M, Addolorato G. “Evaluation of symptoms and palatability in healthy volunteers after ingestion of an iced dessert by using different flavours”. J Biol Regul Homeost Agents. 2009;23(2):127-31.

44 Tiscornia, O. M. Cresta, M. A. D. Celener D. , Negri, G. Vaccaro, M. I. Waisman H. Bustos Fernandez L. and Dreiling D. A. “Pure pancreatic juice in humans: orange-lemon- juice-induced secretory effects. Comparative analysis with a regular meal, sorbitol, acidified peptone broth and secretin” Journal International Journal of Gastrointestinal Cancer . 1988; 3 (6)

45 Duke, JA Handbook of phytochemical constituents of GRAS herbs and other economic plants. Boca Raton, FL. CRC Press, 1992a; Wichtl, M. Teedrogen. Ein Handbuch fur Apotheker und Arzte. Wissenschaftliche Verlagsgesellscharft. mbH Stuttgart, 1984; Williamson, E. M. and Evans, F. J. Potter’s New Cyclopaedia of Botanical Drugs and Preparations, Revised Ed. 1988; Duke, JA. Handbook of biologically active phytochemicals and their activities. Boca Raton, FL. CRC Press, 1992b; Newall, C. A., Anderson, L. A. and Phillipson, J. D. Herbal Medicine – A Guide for Health-care Professionals. The Pharmaceutical Press, London, 1996; Werbach, M. Healing with Food. Harper Collins, New York, 1993.

46 Harborne Jeffery B. and Baxter, H. eds. Phytochemical Dictionary. A Handbook of Bioactive Compounds from Plants. Taylor & Frost, London, 1983; Zebovitz, T. C. Ed. Part VII. Flavor and Fragrance Substances, in Keith L. H. and Walters, D.B., eds. Compendium of Safety Data Sheets for Research and Industrial Chemicals. VCH Publishers, New York, 1989; Newall, Anderson, and Phillipson 1996 Op. Cit.

47 Grieve A Modern Herbal. Penguin, 1984; Nadkarni KM Indian Materia Medica. Popular Prakashan, Bombay, 1976; Rastogi RP, Mehrotra BN Compendium of Indian medicinal plants. Volume I-IV. Central Drug Research Institute, Lucknow, and National Institute of science communication, New Delhi, India, 1994; Rastogi RP, Mehrotra BN Glossary of Indian Medicinal Plants. National Institute of science communication, New Delhi, India, 2002.

48 Duke 1992b Op. Cit.; Buchbauer, G., Jirovetz, L., Nikiforov, A., Remberg, G., Raverdino, V. “Headspace-Analysis and Aroma Compounds of Austrian Hay-Blossoms (Flores Graminis, Graminis Flos) used in Aromatherapy”. J. Ess. Oil Res. 1990; 2: 185-191; Duke (2009) http://www.ars-grin.gov/duke/

49 Pinkas M, Bezanger-Beauquesne L. Les plantes dans la therapeutique moderne 2a edizione, Parigi, Ed Maloine, 1986.

50 Farnsworth ed. NAPRALERT database. Chicago, University of Illinois at Chicago, IL; Brand N. “Foeniculum”. In: Hänsel R, Keller K, Rimpler H, Schneider G, editors. Hagers Handbuch der Pharmazeutischen Praxis, 5th ed. Volume 5: Drogen E-O. Berlin-Heidelberg-New York-London: Springer-Verlag: 1993, 156-81; Forster HB, Niklas H, Lutz S. “Antispasmodic effects of some medicinal plants”. Planta Medica. 1980;, 40:309-319; Weiss RF. Lehrbuch der Phytotherapie, 7th ed. Stuttgart, Hippokrates, 1991; Blumenthal 1998 Op. Cit.

51 Alexandrovich I, Rakovitskaya O, Kolmo E, Sidorova T, Sushunov S. “The effect of fennel (Foeniculum Vulgare) seed oil emulsion in infantile colic: a randomized, placebo-controlled study”. Altern Ther Health Med. 2003; 9:58-61

52 Savino F, Capasso R, Palumeri E, Tarasco V, Locatelli E, Capasso F. “Advances on the effects of the compounds of a phytotherapic agent (ColiMil) on upper gastrointestinal transit in mice”. Minerva Pediatr. 2008; 60(3):285-90

53 Capasso R, Savino F, Capasso F. “Effects of the herbal formulation ColiMil on upper gastrointestinal transit in mice in vivo“. Phytother Res. 2007; 21(10):999-1101; et al. 2008 Op. Cit.

54 Chakurski et al. 1981 Op. Cit.

55 Brand 1993 Op. Cit.; Czygan F-C, Hiller K. “Foeniculi amari fructus – Bitterer Fenchel, Foeniculi dulcis fructus – Süßer Fenchel”. In: Teedrogen und Phytopharmaka. Ein Handbuch für die Praxis auf wissenschaftlicher Grundlage, 4th ed. Stuttgart: Wissenschaftliche Verlagsgesellschaft: 2002, 212-5; Müller-Limmroth W, Fröhlich HH. “Effect of various phytotherapeutic expectorants on mucociliary transport.” Fortschrift für Medizin. 1980; 98:95-101; Blumenthal et al. 1998 Op. Cit.; Hänsel et al. 1993) Op. Cit; Forster, Niklas, Lutz 1980 Op. Cit.

56 Ghelardini C, Galeotti N, Mazzanti G. “Local anaesthetic activity of monoterpenes and phenylpropanes of essential oils”. Planta Med. 2001; 1;67:564-6

57 Haginiwa J, Harada M, Morishita I. “Pharmacological studies on crude drugs VII. Properties of essential oil components of aromatics and their pharmacological effects on mouse intestine.” Yakugaku Zasshi. 1963; 83:624-628; Ostad SN Soodi M, Shariffzadeh M, Khorshidi N, Marzban H “The effect of fennel essential oil on uterine contraction as a model for dysmenorrhea, pharmacology and toxicology study”. Journal of Ethnopharmacology. 2001; 76:299-304

58 Lis-Balchin M, Hart S. “A preliminary study of the effect of essential oils on skeletal and smooth muscle in vitro”. J Ethnopharmacol. 1997; 58:183-7

59 Forster et al. 1980 Op. Cit.

60 Schuster KP. “Intensity and loss of the in situ effect of spasmolytically active drugs, galenic preparations (crude drugs) and galenic drugs in finished dosage form, on isolated gut of guinea-pig and cat” Dissertation, University of Munich, 1971

61 Niiho Y, Takayanagi I, Takagi K. “Effects of a combined stomachic and its ingredients on rabbit stomach motility in situ“. Japanese Journal of Pharmacology. 1977; 27:177-179

62 Vasudevan K, Vembar S, Veeraraghavan K, Haranath PSRK. “Influence of intragastric perfusion of aqueous spice extracts on acid secretion in anesthetized albino rats”. Indian J Gastroenterol. 2000; 19:53-6

63 Platel K, Srinivasan K. “A study of the digestive stimulant action of select spices in experimental rats”. J Food Sci Technol. 2001; 38:358-361

64 Platel, K., Srinivasan, K. Stimulatory influence of select spices on bile secretion in rats. Nutr Res 2000; 20:1493-1503

65 Weizman Z, Alkrinawi S, Goldfarb D, Bitran C. “Efficacy of herbal tea preparation in infantile colic”. J Pediatr. 1993; 122:650-652

66 Vejdani R, Shalmani HR, Mir-Fattahi M, Sajed-Nia F, Abdollahi M, Zali MR, Alizadeh AH, Bahari A, Amin G “The efficacy of an herbal medicine, Carmint, on the relief of abdominal pain and bloating in patients with irritable bowel syndrome: a pilot study” Dig Dis Sci. 2006 Aug;51(8):1501-7

67 Itokawa, H., S. Mihashi, K. Watanabe, H. Natsumoto,, and T. Hamanaka. “Studies on the constituents of crude drugs having inhibitory activity against contraction of the ileum caused by histamine or barium chloride (1) screening test for the activity of commercially available crude drugs and the related plant materials”. ShoyakugakuZasshi 1983; 37(3): 223-228; Wagner H, Sprinkmeyer L. “Über die pharmakologische Wirkung von Melissengeist”. DeutscheApotheker Zeitung, 1973, 113:1159-1166; Debelmas AM, Rochat J. “Étude pharmacologique des huiles essentielles. Activité antispasmodique etudiée sur une cinquantaine d’échantillons differents”. Plantes médicinales et Phytothérapie, 1967, 1:23-27; Reiter M, Brandt W. “Relaxant effects on tracheal and ileal smooth muscles of the guinea-pig”. Arzneimittel-Forschung, 1985, 35:408-414.

68 Forster et al. 1980 Op. Cit.

69 Hose et al. “Ontogenic variation of the essential leaf oil of Melissa officinalis L.”. Pharmazie. 1997; 52:247-253

70 Duband, F., Carnat, A. P., Carnat, A., Petitjean-Freytet, C., Clair, G., & Lamaison, J. L. “Aromatic and polyphenolic composition of infused peppermint, Mentha x piperita L.”, Ann Pharm Fr. 1992;, 50 (3):146-55.

71 Reynolds JEF, ed. Martindale, the extra pharmacopoeia, 30th ed. London, Pharmaceutical Press, 1996.

72 Leicester RJ, Hunt RH. “Peppermint oil to reduce colonic spasm during endoscopy”. Lancet. 1982; 2:989.

73 Kingham, J. G. C. “Peppermint oil and colon spasm”, Lancet. 1995;, 346(8981): 986; Sparks MJW et al. “Does peppermint oil relieve spasm during barium enema?” British Journal of Radiology. 1995;, 68:841-843.

74 Hawthorne, M et al. “The actions of peppermint oil and menthol on calcium channel dependent processes in intestinal, neuronal, and cardiac preparations”. Aliment Pharmacol. Ther. 1988; 2:108-118

75 Kingham 1995 Op. Cit.

76 Dalvi SS et al. “Effect of peppermint oil on gastric emptying in man: a preliminary study using a radiolabelled solid test meal”. Indian Journal of Physiology and Pharmacology, 1991, 35:212-214.

77 Goerg, K. J. & Spilker, T. “Effect of peppermint oil and caraway oil on gastrointestinal motility in healthy volunteers: a pharmacodynamic study usingsimultaneous determination of gastric and gall-bladder emptying and orocaecal transit time”, Aliment Pharmacol Ther. 2003; 17 (3):445-51.

78 Micklefield, G., Jung, O., Greving, I., & May, B. “Effects of intraduodenal application of peppermint oil (WS(R) 1340) and caraway oil (WS(R) 1520) on gastroduodenal motility in healthy volunteers”, Phytother Res. 2003;, 17 (2): 135- 40.

79 May, B., Kuntz, H. D., Kieser, M., & Kohler, S. “Efficacy of a fixed peppermint oil/caraway oil combination in non-ulcer dyspepsia”, Arzneimittelforschung. 1996; 46(12):1149-53.

80 Freise, J. & Kohler, S. “Peppermint oil-caraway oil fixed combination in non- ulcer dyspepsia– comparison of the effects of enteric preparations”, Pharmazie. 1999; 54(3):210-5.

81 May, B., Kohler, S., & Schneider, B. “Efficacy and tolerability of a fixed combination of peppermint oil and caraway oil in patients suffering from functional dyspepsia”, Alimentary Pharmacology & Therapeutics. 2000; 14(12):1671-1677.

82 Madisch, A., Melderis, H., Mayr, G., Sassin, I., & Hotz, J. “A plant extract and its modified preparation in functional dyspepsia. Results of a double-blind placebo controlled comparative study”, Z Gastroenterol. 2001; 39(7):511-7.

83 Goerg & Spilker 2003 Op. Cit. 2003

84 Coon, J. T. & Ernst, E. “Systematic Review: Herbal medicinal products for non-ulcer dyspepsia”, Alimentary Pharmacology & Therapeutics. 2002; 16(10):1689-1699.

85 Reiter, Brandt 1985 Op. Cit.; Taddei I et al. “Spasmolytic activity of peppermint, sage and rosemary essences and their major constituents”.Fitoterapia. 1988; 59:463-468; Triggle DJ et al. “Peppermint oil as a calcium channel antagonist in intestinal smooth muscle and neuronal preparations”. Gastroenterology. 1988; 94:A465; Taylor BA, Duthie HL, Luscombe DK. “Inhibitory effect of peppermint oil on gastrointestinal smooth muscle”. Gut. 1983; 24:A992. Hills, J. M. & Aaronson, P. I. “The mechanism of action of peppermint oil on gastrointestinal smooth muscle. An analysis using patch clamp electrophysiology and isolated tissue pharmacology in rabbit and guinea pig”, Gastroenterology. 1991; 101(1):55-65.

86 ESCOP 2003 Op. Cit.; Forster et al. 1980 Op. Cit; Leslie GB. “A pharmacometric evaluation of nine Bio-Strath herbal remedies”. Medita. 1978; 8:3-19; Lallement-Guilbert N, Bézanger-Beauquesne L. “Recherches sur les flavonoides quelques Labiees médicinales (romarin, menthe poivrée, suage officinale)”. Plantes médicinales et Phytothérapie. 1970; 4:92-107.

87 Sigmund CJ, McNally EF. “The action of a carminative on the lower esophageal sphincter”. Gastroenterology, 1969, 56:13-18; Massey, B. T. “Diffuse esophageal spasm: a case for carminatives?”, J Clin Gastroenterol. 2001; 33(1):8-10.

88 Harries N, James KC, Pugh WK. “Antifoaming and carminative actions of volatile oils”. Journal of Clinical Pharmacy. 1978; 2:171-177.

89 Lallement-Guilbert, Bézanger-Beauquesne. 1970 Op. Cit.; Leslie 1978 Op. Cit.; ESCOP 2003 Op. Cit.

90 Goerg & Spilker 2003 Op. Cit. 2003

91 Taylor BA et al. “Mechanism by which peppermint oil exerts its relaxant effect on gastrointestinal smooth muscle”. Journal of Pharmacy and Pharmacology. 1985; 37 (Suppl. 1):104.

92 Heimes K, Hauk F, Verspohl EJ. “Mode of action of peppermint oil and (-)-menthol with respect to 5-HT(3) receptor subtypes: binding studies, cation uptake by receptor channels and contraction of isolated rat ileum”. Phytother Res. 2010 Nov 12. doi: 10.1002/ptr.3316.

93 Bruneton 1995 Op. Cit; Carle, R. and Isaac, O. Z Phytotherapie. 1987; 8, 67; Schilcher, H. Die Kamille: Handbuch fur Arzte, Apotheker und andere Naturwissenschaftler, Wissenschaftliche Verlagsgesellschaft, Stuttgart, 1987

94 Stiegelmeyer, H. “Therapie unspezifischer Magenbeschwerden mit Kamillosan.”, Kassenarzt. 1978; 18:3605-3606

95 Weizman et al. 1993 Op. Cit.

96 de la Motte S, Bose-O’Reilly S, Heinisch M, Harrison F. “Double-blind comparison of an apple pectin-chamomile extract preparation with placebo in children with diarrhea” Arzneimittelforschung. 1997; 47:1247-1249

97 Breinlich VJ, Scharnagel K. “Pharmacologic characteristics of the en-yn-dicycloethers from Matricaria chamomilla”. Arzneimittelforschung. 1968; 18:429-431; Mann C, Staba EJ. “The chemistry, pharmacology, and commercial formulations of chamomile”. In: Craker LE, Simon JE, eds. Herbs, Spices, and Medicinal Plants. Recent Advances in Botany, Horticulture, and Pharmacology, Vol. 1. Binghamton, NY: Haworth Press; 1986; Holzl J, Ghassemi N, Hahn B. “Preparation of 14C-spiro ethers by chamomile and their use by an investigation of absorption”. Planta Med. 1986; 52:553; Della Loggia, R., Carle, R., Sosa, S., & Tubaro, A. “Evaluation of the anti- inflammatory activity of Chamomile preparations”, Planta Medica. 1990; 56(6):657-658; Cinco, M., Banfi, E., Tubaro, A., & Dellaloggia “A microbiological survey on the activity of a hydroalcoholic extract of camomile”, International Journal of Crude Drug Research. 1983; 21(4)_145-151.

98 Redaelli,C., et al. J.Chrom. 1981; 209, 110.

99 Achterrath-Tuckermann, U., Kunde, R., Flaskamp, E., Isaac, O., & Thiemer, K. “Pharmacological investigations with compounds of chamomile. V. Investigations on the spasmolytic effect of compounds of chamomile and Kamillosan on the isolated guinea pig ileum”, Planta Med. 1980; 39(1):38-50; Lang W, Schwandt K. “Untersuchung über die glykosidischen Bestandteile der Kamille.” Deutsche Apotheker Zeitung, 1957; 97:149-151; Redaelli C, Formentini L, Santaniello E “HPLC-determination of apigenin in natural samples, chamomile extracts and blood serum [Poster]” Int. Res. Congress on natural Products and Medicinal Agents. 1980; Strasbourg, cited in Carle, R. and Isaac, O. Z Phytotherapie. 1987; 8, 67

100 Achterrath-Tuckermann, et al. 1980 Op. Cit.

101 Maschi O, Cero ED, Galli GV, Caruso D, Bosisio E, Dell’Agli M. “Inhibition of human cAMP-phosphodiesterase as a mechanism of the spasmolytic effect of Matricaria recutita L.” J Agric Food Chem. 2008; 9;56(13):5015-20

102 Pasechnik, I. K. “[Choleretic action of Matricaria officinalis]”, Farmakol Toksikol. 1966; 29(4):468-9.

103 Gupta, M.P. 270 Plantas Medicinales Iberoamericanas, Talleres de Editorial Presencia Ltda., Bogota ICMR, 1995; Indian Council of Medical Research Medicinal Plants of India, Vol. 2, Indian Council of Medical Research, Cambridge Printing Works, New Delhi, 1987; Arvigo, R. and Balick, M., Rain Forest Remedies — One Hundred Healing Herbs of Belize, Lotus Press, Twin Lakes, 1993; Germosén-Robineau, L., Ed. Farmacopea Vegetal Caribeña, Enda-caribe, Tramil, Ediciones, 1997; Duke, J.A. and Vasquez Martinez, R. Amazonian Ethnobotanical Dictionary, CRC Press, Boca Raton, 1994

104 Duke and Vasquez Martinez 1994 Op. Cit.; Arvigo and Balick 1993 Op. Cit.; Peirce, A. The APhA Practical Guide to Natural Medicines, Stonesong Press Book, Wm. Morrow & Co., Inc., New York, 1999; Gupta 1995 Op. Cit.; ICMR – Indian Council of Medical Research Medicinal Plants of India, Vol. 2, Indian Council of Medical Research, Cambridge Printing Works, New Delhi, 1987; Germosén-Robineau 1997 Op. Cit.; Duke, J.A. and Ayensu, E.S. Medicinal Plants of China, 2 vols., Reference Publications, Algonac, 1985.

105 Caceres 1996 Op. Cit.

106 De Vincenzi, M. et al. “Monographs on botanical flavouring substances used in foods. Part IV”. Fitoterapia. 1994; 66(3):206-207.

107 Williamson, Evans 1988 Op. Cit.; Caceres 1996 Op. Cit.; Torrent Martí, M.T. “Algunos aspectos farmacognósticos y farmacodinámicos de Lippia citriodora H.B.K.” Revista de la Real Academia de Farmacia de Barcelona. 1985a; (14): 39-55; Carnat A., Carnat A.-P., Chavignon O., Heitz A., Wylde R., Lamaison J.-L., Planta Med. 1995;, 61, 490; Lamaison, J.L. et al. “Le verbascoside, compose phenolique majeur del feuilles de frene (Fraxinus excelsior) et de verveine (Aloysia triphylla)”. Pl. Medic. et Phytother. 1993; 26(3):225-233; Skaltsa. H. e G. Shammas. “Flavonoids from Lippia citriodora“. Planta Medica. 1988; (5):465; Valentão P., Andrade P. B., Areias F., Ferreres F., Seabra R. M. J. Agric. Food Chem. 1999; 47, 4579–4582; Andrade P. B., Seabra R. M., Valentão P., Areias F. J. Liq. Chrom. & Rel. Technol. 1998; 21, 2813-2820.

108 Newall, Anderson, Phillipson 1996 Op. Cit.

109 Baudi, O. Plantas Medicinales existentes en Venezuela y Latinoamérica. Editorial América. Caracas, 1987; Torrent Martí, M.T. “Acción farmacológica de algunas esencias de origen biológico”. Revista de la Real Academia de Farmacia de Barcelona. 1985; (1): 43-56; Torrent Martí 1985a Op. Cit.; Newall, Anderson., Phillipson 1996 Op. Cit.; Duke 1985 Op. Cit.; Fleming 1998 Op. Cit.

110 Duke 1985 Op. Cit.; List, P.H. and Hohammer, L., Hager’s Handbuch der Pharmazeutischen Praxis, Vols. 2-6, Springer-Verlag, Berlin, 1969-1979

111 García, B. H. Flora Medicinal de Colombia. Editorial Tercer Mundo. Editores Bogotá. Colombia. 1982; Newall, Anderson., Phillipson 1996 Op. Cit.; Jain, S.K. and deFillips, R., Medicinal Plants of India, 2 vols., Reference Publications, Algonac, 1991; Council of Scientific and Industrial Research (CSIR) The Wealth of India: A Dictionary of Indian Raw Materials and Industrial Products, Revised, Vols. 1-3, CSIR, New Delhi, 1992

112 Caceres 1996 Op. Cit.; Newall, Anderson., Phillipson 1996 Op. Cit.

113 Dabroy L. “Confirmacion de la actividad antibacteriana de algunas especies del genere Lippia contra bacterias que causan infeccion respiratoria” (Tesis) Giatemala Fac CCQQ y Farm, 1994; Arteche A Fitoterapia. Vademecum de prescripcion. Bilbao, CITA, 1994

114 Williamson and Evans 1988 Op. Cit.

115 Ragone MI, Sella M, Conforti P, Volonté MG, Consolini AE. “The spasmolytic effect of Aloysia citriodora, Palau (South American cedrón) is partially due to its vitexin but not isovitexin on rat duodenums”. J Ethnopharmacol. 2007; 113(2):258-66.

116 Caceres 1996 Op. Cit.

117 Yeung Him-Che Handbook of Chinese Herbs and Formulas, Institute of Chinese Medicine, Los Angeles, 1985

118 Jodral MM Illicium, Pimpinella, and Foeniculum CRC Press, Boca Raton, 2004

119 Reiter, M., and W. Brandt. “Relaxant effects on tracheal and ileal smooth muscles of the guinea pig”. Arzneim- Forsch 1985; 35(1): 408-414.; Albuquerque AA, Sorenson AL, Leal-Cardoso JH. “Effects of essential oil of Croton zehntneri, and of anethole and estragole on skeletal muscles”. Journal of Ethnopharmacology. 1995; 49:41-49

120 Melzig, M e Teuschen, E. “Investigations of the influence of essential oil and their main components on the adenosine uptake by cultivated endothelial cells”. Planta Medica. 1991; 57(1):41-42; Tirapelli CR, de Andrade CR, Cassano AO, D Souza FA, Ambrosio SR, da Costa FB, de Oliveira AM. “Antispasmodic and relaxant effects of the hidroalcoholic extract of Pimpinella anisum (Apiaceae) on rat anococcygeus smooth muscle”. J Ethnopharmacol. 2007; 1;110(1):23-9

121 Peirce, A., The APhA Practical Guide to Natural Medicines, Stonesong Press Book, Wm. Morrow & Co., Inc., New York, 1999; Duke 1985 Op. Cit.; Leung, A.Y. and Foster, S., Encyclopedia of Common Natural Ingredients, 2nd ed., John Wiley & Sons, New York, 1995; Gruenwald, J. et al., PDR for Herbal Medicines, 2nd ed., Medical Economics Co., Montvale, NJ, 2000; Blumenthal et al. 1998 Op. Cit.

122 Peirce 1999 Op. Cit.; Duke 1985 Op. Cit.; Williamson and Evans 1988 Op. Cit.; Gruenwald et al. 2000 Op. Cit.

123 Peirce 1999 Op. Cit.; Duke 1985 Op. Cit.; Gruenwald et al. 2000 Op. Cit.; Blumenthal et al. 1998 Op. Cit.

124 ASEAN Standard of ASEAN herbal medicine, Vol. I. Jakarta, ASEAN Countries, 1993; Farnsworth Op. Cit.; Blumenthal et al. 1998 Op. Cit.; Bisset NG. Max Wichtl’s herbal drugs & phytopharmaceuticals. Boca Raton, FL, CRC Press, 1994; Ghazanfar SA. Handbook of Arabian medicinal plants. Boca Raton, FL, CRC Press, 1994; Chang HM, But PPH, eds. Pharmacology and applications of Chinese materia medica, Vol. 1. Singapore, World Scientific Publishing, 1986.

125 ASEAN 1993 Op. Cit.; Awang, D. V. C. “Ginger”, Canadian Pharmaceutical Journal. 1992; 125(7):309-311; Yoshikawa, M., Chatani, N., Hatakeyama, S., Nishino, Y., Yamahara, J., & Murakami, N. “Crude drug processing by far-infrared treatment. II. Chemical fluctuation of the constituents during the drying of Zingiberis Rhizoma”, Yakugaku Zasshi. 1993; 113(10):712-717.

126 Platel, K. & Srinivasan, K. “Influence of dietary spices or their active principles on digestive enzymes of small intestinal mucosa in rats” International Journal of Food Sciences & Nutrition. 1996; 47(1):55-59; Platel, K., and K. Srinivasan. “Influence of dietary spices and their active principles on pancreatic digestive enzymes in albino rats”. Nahrung 2000; 44(1): 42-46; Yamahara, J., Miki, K., & Chisaka, T. “Cholagogic effect of ginger and its active constituents” Journal of Ethnopharmacology. 1985; 13(2):217-225..

127 Yamahara et al. 1985 Op. Cit..

128 Platel and Srinivasan 1996 Op. Cit.; Platel and Srinivasan 2000 Op. Cit.

129 Reiter and Brandt 1985 Op. Cit..

130 Itokawa et al. 1983 Op. Cit.

131 Kato, M., J. Nagao, M. Hayashi, and E. Hayashi. “Pharmacological studies on saiko-prescriptions. I. Effects of saiko- prescriptions on the isolated smooth muscles”. Yakugaku Zasshi 1982; 102: 371-380.

132 Hung, N. D., I. K. Chang, H. C. Jung, and N. J. Kim. “Studies on the efficacy of combined preparation of crude drugs (XII)”. Korean J Pharmacog 1983; 14(1): 9-16.

133 Gupta, Y. K. & Sharma, M. “Reversal of pyrogallol-induced delay in gastric emptying in rats by ginger (Zingiber officinale)” Methods & Findings in Experimental & Clinical Pharmacology. 2001; 23(9):501-503; Micklefield, G. H., Redeker, Y., Meister, V., Jung, O., Greving, I., & May, B. “Effects of ginger on gastroduodenal motility”, Int J Clin Pharmacol Ther. 1999; 37(7):341-6; Yamahara, J., Huang, Q., Li, Y., Xu, L., & Fujimura, H. “Gastrointestinal motility enhancing effect of ginger and its active constituents”, Chemical & Pharmaceutical Bulletin. 1990; 38(2):430-431.

134 Shibata, C., I. Sasaki, H. Naito, T. Ueno, and S. Matsuno. “The herbal medicine Dai-Kenchu-Tou stimulates upper gut motility through cholinergic and 5-hydroxytryptamine 3 receptors in conscious dogs”. Surgery 1999; 126(5): 918-924.

135 Stewart, J. J., Wood, M. J., Wood, C. D., & Mims, M. E. “Effects of ginger on motion sickness susceptibility and gastric function” Pharmacology. 1991; 42(2):111-120; Phillips, S., Hutchinson, S., & Ruggier, R. “Zingiber officinale does not affect gastric emptying rate: A randomised, placebo-controlled, crossover trial”, Anaesthesia. 1993; 48(5):393-395.

136 Ghayur MN, Gilani “Pharmacological basis for the medicinal use of ginger in gastrointestinal disorders”. AH Dig Dis Sci. 2005; 50(10):1889-97; Ghayur MN, Gilani AH. “Species differences in the prokinetic effects of ginger”. Int J Food Sci Nutr. 2006; 57(1-2):65-73; Ghayur MN, Khan AH, Gilani AH. “Ginger facilitates cholinergic activity possibly due to blockade of muscarinic autoreceptors in rat stomach fundus”. Pak J Pharm Sci. 2007; 20(3):231-5.

137 Huang, Q. R., Iwamoto, M., Aoki, S., Tanaka, N., Tajima, K., Yamahara, J., Takaishi, Y., Yoshida, M., Tomimatsu, T., & Tamai, Y. “Anti-5-hydroxytryptamine3 effect of galanolactone, diterpenoid isolated from ginger”, Chem Pharm Bull . 1991; 39(2):397-9; Yamahara J et al. “Inhibition of cytotoxic drug-induced vomiting in suncus by a ginger constituent”. Journal of ethnopharmacology. 1989; 27:353-355. Mustafa T, Srivastava KC, Jensen KB. “Drug development report 9. Pharmacology of ginger, Zingiber officinale“. Journal of drug development, 1993, 6:25-39; Yamahara, et al. 1990 Op. Cit.

138 Abdel-Aziz H, Windeck T, Ploch M, Verspohl EJ. “Mode of action of gingerols and shogaols on 5-HT3 receptors: binding studies, cation uptake by the receptor channel and contraction of isolated guinea-pig ileum”. Eur J Pharmacol. 2005;530(1-2):136-43

139 Nievergelt A, Huonker P, Schoop R, Altmann KH, Gertsch J. “Identification of serotonin 5-HT1A receptor partial agonists in ginger”. Bioorg Med Chem. 2010; 18(9):3345-51

140 Huang et al. 1991 Op. Cit.; Mustafa, Srivastava, Jensen 1993 Op. Cit.; Yamahara, J., Huang, Q., Li, Y., Xu, L., & Fujimura, H. “Gastrointestinal motility enhancing effect of ginger and its active constituents”. Chemical & Pharmaceutical Bulletin. 1990; 38(2):430-431.

141 Abdel-Aziz et al. 2006 Op. Cit.

142 Meyer, K., Schwartz, J., Crater, D., & Keyes, B. “Zingiber officinale (ginger) used to prevent 8-Mop associated nausea” Dermatol Nurs. 1995; 7(4):242-4. Arfeen Z, Owen H, Plummer JL, Ilsley AH, Sorby-Adams RAC, Doecke CJ. “A double-blind randomized controlled trial of ginger for the prevention of postoperative nausea and vomiting.” Anaesth Intens Care 1995; 23:449-452; Phillips S, Ruggier R, Hutchinson SE. “Zingiber officinale (ginger)–an antiemetic for day case surgery”. Anaesthesia 1993; 48:715-717; Fisher-Rasmussen W, Kjaer SK, Dahl C, Asping U. “Ginger treatment of hyperemesis gravidarum“. Eur J Obstet Gynecol Reprod Biol 1990; 38:19-24; Wood CD, Manno JE, Wood MJ, Manno BR, Mims ME. “Comparison of efficacy of ginger with various antimotion sickness drugs”. Clin Res Pr Drug Regul Aff. 1988; 6(2):129-136; Bone ME, Wilkinson DJ, Young JR, McNeil J, Charlton S. “Ginger root–a newantiemetic”. Anesthesia 1990; 45:669-671; Ernst, E. & Pittler, M. H. “Efficacy of ginger for nausea and vomiting: a systematic review of randomized clinical trials” Br J Anaesth. 2000; 84(3):367- 71; Visalyaputra S, Petchpaisit N, Somcharoen K, Choavaratana R. “The efficacy ofginger root in the prevention of postoperative nausea and vomiting after outpatient gynaecological laproscopy”. Anaesthesia 1998; 53:486-510; Vutyavanich T, Kraisarin T, Ruangsri RA. “Ginger for nausea and vomiting in pregnancy: randomized, double-masked, placebo-controlled trial”. Obstet Gynecol 2001; 97(4):577-582; Grontved A, Brask T, Kambskard J, Hentzer E. “Ginger root against seasickness”. Acta Otolaryngol 1988;105:45-49; Stewart et al. Op. Cit.; 1991.

143 Ernst, Pittler 2000 Op. Cit.

144 Jewell, D. & Young, G. “Interventions for nausea and vomiting in early pregnancy”, Cochrane Database Syst Rev. 2002; 1, CD000145.

145 Watson CP, Tyler KL, Bickers DR, Millikan LE, Smith S, Coleman E. “A randomized vehicle-controlled trial of topical capsaicin in the treatment of postherpetic neuralgia”. Clin Ther 1993; 15: 510-25; Epstein JB, Marcoe JH. “Topical application of capsaicin for treatment of oral neuropathic pain and trigeminal neuralgia”. Oral Surg Oral Med Oral Pathol 1994; 77:135-40; Sicuteri F, Fusco BBM, Marabini S, et al. “Beneficial effect of capsaicin application to the nasal mucosa in cluster headache”. Clin J Pain 1989; 5: 49-53. The Capsaicin Study Group. “Treatment of painful diabetic neuropathy with topical capsaicin. A multicenter, doubleblind, vehicle-controlled study”. Arch Intern Med 1991; 151:2225-9; Barbanti G, Maggi CA, Beneforti P, Baroldi P, Turini D. “Relief of pain following intravesical capsaicin in patients with hypersensitive disorders of the lower urinary tract”. Br J Urol 1993; 71: 686-91

146 Lynn B. “Capsaicin: actions on nociceptive C-fibres and therapeutic potential”. Pain 1990; 41: 61-9; Holzer P. “Capsaicin: cellular targets, mechanism of action, and selectivity for thin sensory neurons”. Pharmacol Rev 1991; 43: 143-201; Mayer EA, Gebhart GF. “Basic and clinical aspects of visceral hyperalgesia”. Gastroenterology 1994; 107: 271-93

147 Rodriguez-Stanley S, Collings KL, Robinson M, Owen W, Miner JR. “The effects of capsaicin on reflux, gastric emptying and dyspepsia”. Aliment Pharmacol Ther 2000; 14: 129-34;

148 Bortolotti M, Coccia G, Grossi G, Miglioli M “The treatment of functional dyspepsia with red pepper” Aliment Pharmacol Ther 2002; 16: 1075-1082

149 Debreceni A, Abdel-Salam OM, Juricskay I, Szolesanyi J,Mozsik G. “Capsaicin increases gastric rate in healthy human subjects measured by 13C-labeled octanoic acid breath test”. J Physiol (Paris) 1999; 93: 455-60

150 Lippe ITH, Pabst MA, Holzer P. “Intragastric capsaicin enhances rat gastric acid elimination and mucosal blood flow by afferent nerve stimulation”. Br J Pharmacol 1989; 96: 91-100

151 Alfoldi P, Obal F, Toth E, Hideg J. “Capsaicin pretreatment reduces the gastric acid secretion elicited by histamine but does not affect the responses to carbachol and pentagastrin”. Eur J Pharmacol 1986; 123: 321-7; Rodriguez-Stanley et al. 2000 Op. Cit.; 14: 129-34; Park HJ, Na SK, Lee SI, Kang JK, Park IS. “The effect of red pepper and capsaicin on gastric emptying in human volunteers”. Gastroenterology 1998; 114: G3361

152 Alfoldi et al. 1986 Op. Cit.; Mozsik G, Debreceni A, Abdel-Salam OM, et al. “Small doses of capsaicin given intragastrically inhibit gastric basal acid secretion in healthy human subjects”. J Physiol (Paris) 1999; 93: 433-6.; Gonzalez R, Dunkel R, Koletzko B, Schusdziarra V, Allesher HD. “Effect of capsaicin-containing red pepper sauce suspension on upper gastrointestinal motility in healthy volunteers”. Dig Dis Sci 1998; 43: 11 165-71; Vazquez-Olivencia W, Shah P, Pitchumoni CS. “The effect of red and black pepper on orocecal transit time”. J Am Coll Nutr 1992; 11: 228-31; Horowitz M, Wishart J, Maddox A, Russo A. “The effect of chilli on gastrointestinal transit”. J Gastroenterol Hepatol 1992; 7: 52-6

153 Reinbach HC, Smeets A, Martinussen T, Møller P, Westerterp-Plantenga MS. “Effects of capsaicin, green tea and CH-19 sweet pepper on appetite and energy intake in humans in negative and positive energy balance”. Clin Nutr. 2009; 28(3):260-5

154 Aruoma OI, Hayashi Y, Marotta F, Mantello P, Rachmilewitz E, Montagnier L. “Applications and bioefficacy of the functional food supplement fermented papaya preparation”. Toxicology. 2010; 278(1):6-16. Epub 2010 Sep 24.

155 Duke et al. 2002 Op. Cit.; Caceres 1996 Op. Cit.

156 Williamson 2002 Op. Cit.

Digestive Functional Foods 1

Necessitato a fare un po’ di lavoro di background per un articolo prossimo venturo su cibi funzionali con attività digestiva, pubblico qui parte del materiale raccolto, in alcuni pezzi. La versione in italiano? Speriamo in tempi brevi :-).

Inizio con un volo d’uccello sui termini del discorso: i cibi funzionali.

——————————————————————————————–

Functional foods and nutraceuticals
During the 1980s the Japanese Health Authorities identified special foods with extra-nutritional values as an important object of discussion, and in 1984 the Japanese Ministry of Education Science and Culture used the term “physiologically functional foods” or “functional foods” for the first time. In 1991, a formal category for alimentary items that had extra-nutritional activities was introduced: that of the “Foods for Specified Health Uses” (FOSHU), defined as: “foods with documented evidence of aiding specific physiological functions beyond whatever conventional nutrient exist in the food”.[1]

Around the time when the FOSHU system was under discussion in Japan, the term “nutraceutical” was introduced in the U.S., which included “any substance that may be considered a food or a part of a food and demonstrates to have a physiological benefit, or to provide medical or health benefits, including the prevention and treatment of protection against chronic  disease”,[2]  and which, although “produced from foods”, is  “sold in pills, powders, (potions) and other medical forms not generally associated with food[3] “.

Functional foods have been defined in many ways, but recent definitions describe them as: “products that have physiologic benefits beyond nutritive qualities, and are offered in the form of foodstuffs, including those that have been fortified or have ingredients reduced or removed”;[4] or as items that are: “similar in appearance to conventional foods, (…) consumed as part of a usual diet, and have demonstrated physiological benefits and / or reduce the risk of chronic disease beyond basic nutritional functions.”

Since then, many other terms have been used to describe the complex and multifaceted gray area of food-and-medicine: pharmafood, phytoceutical, phytonutrient, medicinal food, designer food, etc. However, functional food and nutraceutical remain the two most commonly encountered terms, and are often used interchangeably in the generalist news media. In fact one is the subset of the other, since by definition nutraceuticals are those functional foods that are transformed and offered in a pill or otherwise concentrated form, different from normal, common foodstuff.

Traditional functional foods
Although these two term have perhaps been around for 20 years, foods which are “good for your health” (Traditional or Folk Functional Foods) have been around for much longer. Medical historians have stressed the fact that the distinction between medicines and food was blurred and at times non-existent in ancient and preliterate societies, and that it was the advent of modern medicine which artificially constructed a defined hiatus between diet and therapy, food and medicine.[5]  Quoting Albala: ”most complex societies codify their foods investing in them a significance beyond satisfying hunger. In the West, at least since the ancient Greeks, this significance has been medical.”[6] Galen, following the Hippocratic spirit of preventive medicine of the Regimen, codified the age old belief that a good doctor should also be a good cook.[7] Boorde and Cogan could, in the middle of the 16th century, still hotly debate in favor of this belief, the first saying that: ”A good coke is halfe a physycyon. For the chefe physycke (the counseyll of a physycyon excepte) doth come from the kytchyn”,[8] the second referring to: ”cunning Cookes, or to the learned Physitian, who is or ought to be a perfect Cooke in many points”.[9]

The same can be said of ancient Chinese Medicine,[10] where the term Wei meant “taste” but carried all the potency of astronomical, political, ritual and medical theory association with the five agents (wood, fire, earth, metal, water), and the five flavors were to extend a framework of knowledge that had existed since/been constructed in early imperial times.[11]

Examples of FF are also available in contemporary times, both in pre-industrial societies and, although vanishing, in industrialized societies.[12] In the introduction to the collection of essays dedicated to medicinal foods, Pieroni and Price present some memories that could well be our own: the chestnut-meal polenta cooked in red wine as a cough remedy recalled by Pieroni[13] and the chicken soup used for colds cited by Price;[14] and  since the 1970s ethnobotanical literature has made it clear that the blurring of  boundaries between food and medicine is present in contemporary traditional societies, and that, as many studies have shown, non-cultivated wild gathered plants play an important role in the health benefits attributed to the Mediterranean diets.[15]

Ethnobotanists have pointed out that it would be more appropriate to talk about a continuum linking the opposite poles of medicines and foods in folk knowledge,[16] and Pieroni and Quave have come up with an often-cited mapping of this continuum, describing three other categories beyond those of food and medicine:[17]

  • Functional Foods: consumed as foods but acting beyond their basic nutritional function as food by providing protection or reducing the risk of chronic disease.
  • Folk Functional Foods: weedy species or foods eaten because they are healthy but with a general rather than unique and specific health action. Besides their main nutritional or denjoyment purposes they have other effects on body functions.[18]
  • Food medicines/Medicinal foods are ingested in a food context but are assigned specific medicinal properties; or they are consumed in order to obtain a specific medicinal action.

Some other plants are used multifunctionally, simultaneously used as food and medicines without any relationship between the two uses.[19]

It is, therefore, clear that, when talking about traditional functional foods, we need to go beyond the marketing hype, which often puts together (without blending them) the themes of the “natural” hence “safe” traditional food, with the scientific authority of biomedicine bestowed on the term functional.
Any research on this subject needs to be done across fields of research, combining historical, ethnobotanical and biomedical knowledge and insights, to avoid the fallacy of seeing FF as a mere container/vessel for phytochemicals, discounting the cultural construction of the objects of research.  Not only would this be methodologically incorrect, it would also  lead to an important mistake: namely, ascribing functional potential to a material simply due to the presence of an identified compound with known experimental activity; or, conversely, of choosing one compound as the sole element responsible for  the “medicinal” dimension of a food.

——————————————————————————————————————-
Note
[1] Etkin, N.L. Edible medicines: An ethnopharmacology of food. The University of Arizona Press. 2006. p. 207; Dai Y, Luo X., “Functional food in China”. Nutr Rev. 1996 Nov; 54 (11 Pt 2):S21-3.
[2] DeFelice, S.L. “Preface”. In S.L. DeFelice (ed.) Nutraceuticals: Developing, Claiming, and Marketing Medical Foods. Pp. V-viii. Marcel Dekker, New York
[3] Recommendations for Defining and Dealing with Functional Foods, Report of the Bureau of Nutritional Sciences Committee on Fuctional Foods, Health Canada, 1996
[4] Etkin, N.L. 2006 Op. Cit. Pp. 207-208
[5] Etkin, N.L. Chapter 2: “Food in the history of biomedicine”. In N.L. Etkin 2006 Op. Cit. p. 207
[6] Albala, Kenneth “Dietary regime in the Renaissance”, in Malloch Room Newsletter, Jan. 1994,7: 1–2.
[7] Grant, M Galen on food and diet, London, Routledge, 2000, p. 62.; Powell, O Galen: On the properties of foodstuffs, Cambridge University Press, 2003
[8] Boorde, A The first boke of the introduction of knowledge and a compendyous regyment, ed. F J Furnivall, Early English Text Society, Extra Series, 10 London, Early English Text Society, 1870, p. 277; from the edition of 1547. As quoted in Andrew Wear, Knowledge and practice in English medicine, 1500–1680, Cambridge University Press, 2000, p. 170
[9] Cogan, T The haven of health: chiefely gathered for the comfort of students, and consequently of all those that have a care of their health, amplified upon five words of Hippocrates, written Epid. 6, Labor, cibus, potio, somnus, Venus .. . Hereunto is added a preservation from the pestilence, with a short censure of the late sicknes at Oxford of Thomas Cogan, London, printed by Henrie Midleton, for William Norton, 1584, p. 98, as cited in Wear, op. cit., note 2 above, p. 170.
[10] Unschuld, Paul U. Medicine in China: A History of Ideas. University of California Press, 1985; Unschuld, Paul U. Medicine in China: a history of pharmaceutics. Berkeley: University of California Press; Lo, Vivienne, and Penelope Barrett. “Cooking up fine remedies: on the culinary aesthetic in a sixteenth-century Chinese Materia Medica.” Medical History 49, no. 4 (2005): 395-422..
[11] Graham, A Disputers of the Tao, La Salle, ILL, Open Court, 1989, pp. 314–70
[12] Rivera-Nunez D., Obion-de-Castro C “Plant food as medicine in Meditterranean Spain” Actes du 2e Colloque  Européen  d’Ethnophannacologie  et  de  la 1 le Conf6rence  internationale  d’Ethnomédecine, Heidelberg, 24-27 mars 1993; Sandhu DS, Heinrich M. “The use of health foods, spices and other botanicals in the Sikh community in London”. Phytother Res. Jul 2005;19(7):633-42
[13] Pieroni A, & Price LL “Introduction” in Eating and Healing: Traditional Food As Medicine, The Haworth Press, 2006
[14] Pieroni and Price 2006 Op. Cit.
[15] Pieroni A, Nebel S, Quave C, Munz H, Heinrich M. “Ethnopharmacology of liakra: traditional weedy vegetables of the Arbereshe of the Vulture area in southern Italy”. Journal of Ethnopharmacology 2002, 81:165-185.; Bonet, M.A. and J. Vallés. “Use of non-crop food vascular plants in Montseny biosphere reserve (Catalonia, Iberian Peninsula)”. International Journal of Food Science and Nutrition; 2002. 53:225– 248; Rivera, D., C. Obon, C. Inocencio, M. Heinrich, A. Verde, J. Fajardo, and R. llorach. “The ethnobotanical study of local mediterranean food Plants as Medicinal Resources in Southern Spain”. Journal of Physiology and Pharmacology. 2005. 56 (S):97–114; Tardío, J., H. Pascual, and R. Morales. “Wild food plants traditionally used in the province of Madrid, Central Spain”. Economic Botany. 2005;  59:122– 136; Tardío, J., M. Pardo de Santayana, and R. Morales. “Ethnobotanical review of edible plants in Spain” Botanical Journal of the Linnean Society, 2006, 152, 27–71; The Local Food-Nutraceuticals Consortium “Understanding local Mediterranean diets: A multidisciplinary pharmacological and ethnobotanical approach”. Pharmacological Research. 2005; 52 (2005) 353–366
[16] Etkin, N.L. and P.J. Ross “Food as medicine and medicine as food: An adaptive framework for the interpretation of plant utilisation among the Hausa of northern Nigeria”. Social Science and Medicine. 1982; 16: 1559-1573; Johns, T. With bitter herbs they shall eat it. Tucson: University of Arizona Press. 1990; Grivetti, L.E. and B.M. Ogle “Value of traditional foods in meeting macroand micronutrients needs: The wild plant connection”. Nutrition Research Review. 2000; 13: 31-46; Ogle, B.M. and L.E. Grivetti “Legacy of the chameleon: Edible wild plants in the kingdom of Swaziland, southern Africa. A cultural, ecological, nutritional study. Part I–Introduction, objectives, methods, Swazi culture, landscape and diet”. Ecology of Food and Nutrition. 1985a; 16: 193-208; Ogle, B.M. and L.E. Grivetti “Legacy of the chameleon: Edible wild plants in the kingdom of Swaziland, southern Africa. A cultural, ecological, nutritional study. Part II–Demographics, species, availability and dietary use, analysis by ecological zone”. Ecology of Food and Nutrition. 1985b; 17: 1-30; Ogle, B.M. and L.E. Grivetti “Legacy of the chameleon: Edible wild plants in the kingdom of Swaziland, southern Africa. A cultural, ecological, nutritional study. Part III–Cultural and ecological analysis”. Ecology of Food and Nutrition. 1985c; 17: 31-40; Ogle, B.M. and L.E. Grivetti “Legacy of the chameleon: Edible wild plants in the kingdom of Swaziland, southern Africa. A cultural, ecological, nutritional study. Part IV–Nutritional values and conclusions”. Ecology of Food and Nutrition. 1985d; 17: 41-64
[17] Pieroni, A. e Quave, C. “Functional foods or food medicines? On the consumption of wild plants among Albanians and Southern Italians in Lucania” in A., Pieroni e L., Leimar Price (eds.) Eating and Healing, Haworth Press,  2006, p. 110
[18] Preuss, A. “Characterisation of functional food”. Deutsche Lebensmittel-Rundschau, 1999. 95:468-472
[19] Ceuterick, Melissa, Ina Vandebroek, Bren Torry, Andrea Pieroni “The Use of Home Remedies for Health Care and Well-Being by Spanish-Speaking Latino Immigrants in London: A Reflection on Acculturation” in Andrea Pieroni & Ina Vandebroek (eds.) Traveling cultures and plants: The ethnobiology and ethnopharmacy of human migrations. Bergham Books, New York, 2007

Uomo e piante 7/dimoltialtri

Dopo un imperdonabile iato concludo la prima tranche di elucubrazioni uomo-piantesche. Potete recuperare le puntate precedenti qui, qui, qui, qui, qui, e qui.

Per approfondimenti correlati ma tangenziali consiglio i sempre ottimi post di Meristemi (aka Erba Volant) qui, qui e qui.

Alcuni testi sono stati importanti per la scrittura di questo post, e più in generale per immaginare la serie stessa: questo, questo, questo, questo e questo.

——————————————————————————————

Riprendendo le fila del discorso, nella puntata incentrata sul rapporto chemioecologico e coevolutivo tra uomo e piante avevo citato vari autori (ma ho fatto e farò principalmente riferimento a Johns)[1] secondo i quali l’individuazione da parte dell’uomo di alcune piante “specificamente” medicinali fosse da far derivare dalla combinazione di vari fattori, quali:

  • lo sviluppo di meccanismi biologici, comportamentali e tecnologici di gestione del contatto con le piante e con i compostiin esse contenuti (fuoco, meccanismi di detossificazione);
  • la possibilità, resa concreta da tali meccanismi, di avvantaggiarsi delle proprietà tossiche delle piante in senso farmacologico;
  • l’avvento della tecnologia e dell’agricoltura che, modificando gradualmente ma drasticamente, la dieta umana, resero possibile l’assunzione di maggiori quantità di proteine (derivate da piante coltivate e carne di allevamento) e di minori quantità di piante tossiche nell’alimentazione;
  • il paradossale aumento della varietà di specie vegetali non coltivate (e del lessico ad esse associato) disponibili ed utilizzate dalle popolazioni di orticultori rispetto a quelle dei cacciatori-raccoglitori (il c.d. paradosso botanico-dietetico, vedi sotto).

Secondo Johns è grazie a questi fattori che l’uomo ha potuto nutrirsi con meno rischi (sviluppando meccanismi biologici e tecniche di detossificazione, e poi selezionando piante meno ricche in metaboliti secondari) ed ha potuto iniziare a isolare le piante più ricche in composti farmacologicamente attivi da quelle coltivate a scopo alimentare, quindi a distinguere il campo “terapeutico” da quello nutrizionale,[2] permettendo l’isolamento di una nuova categoria, addirittura di un nuovo oggetto: le piante “medicinali”.[3]

Quindi la medicina, intesa come pratica culturale che comprende l’utilizzo intenzionale di sostanze farmacologicamente attive, affonderebbe le sue radici in un dato biologico evoluzionistico (che fissa diciamo le condizioni di esistenza della medicina) ma nasce nel momento in cui diviene possibile isolare esplicitamente degli elementi (e quindi degli operatori) come terapeutici.

Sembra quindi che il passaggio all’agricoltura, a cui ho accennato in questa precedente puntata, oltre ad essere stato rivoluzionario dal punto di vista alimentare, sociale e culturale, abbia giocato un ruolo cardine anche nello sviluppo della medicina. Vorrei quindi soffermarmi in questa puntata proprio sui dettagli di questo passaggio, riprendendo ed approfondendo alcuni degli argomenti affrontati nei post sulla fitoalimurgia Chepang (qui e qui).

Le conseguenze del passaggio all’agricoltura: medicine alimentari e alimenti medicinali
Il graduale passaggio dalla caccia-raccolta all’agricoltura costituisce uno snodo cruciale che ha influenzato i successivi fenomeni di utilizzo delle piante. Ha influenzato sia le competenze dei gruppi umani rispetto alle piante medicinali, sia le loro competenze alimentari, e quindi la loro possibilità di curarsi e nutrirsi.

I dati etnobotanici si possono spesso analizzare secondo due assi; uno è quello che unisce piante alimentari e piante medicinali (l’asse piante alimentari-medicinali, o asse AM) e l’altro è quello che unisce piante selvatiche e piante coltivate (l’asse piante selvatiche-coltivate, o asse SC). I punti di contatto e di sovrapposizione tra questi assi, punti di contatto e relazioni spesso complesse e soggette a fenomeni di coevoluzione biologica e culturale, sono importanti per comprendere in che modo le competenze degli uomini siano state influenzate dal passaggio all’agricoltura.

Questo tipo di analisi è complesso. La distanza temporale che ci separa dall’oggetto di studio non permette di testare direttamente le ipotesi presentate, né di sapere direttamente quale fosse il rapporto tra le popolazioni preistoriche e il mondo vegetale. Inoltre, come è già stato sottolineato, il passaggio da un tipo di rapporto alimentare ad un altro non ha seguito una traiettoria inevitabile, lineare, unidirezionale, intenzionale: “e certamente non un allontanamento “naturale” e inevitabile” dalla caccia e raccolta.[4] Lungo l’asse raccolta-agricoltura sono state possibili tutte le permutazioni, alcune di esse ancora visibili al giorno d’oggi”: caccia e raccolta, orticoltura (coltivazioni estensive, a bassa tecnologia, con orti familiari a multicoltura), debbio, agricoltura (coltivazione intensiva, ad elevata tecnologia e a monocoltura) ed agricoltura industriale.[5]

La letteratura etnobotanica ci può aiutare offrendo all’analisi le conoscenze e le competenze che caratterizzano e distinguono il rapporto con le piante proprio dei cacciatori-raccoglitori da quello degli agricoltori[6]; ci offre quindi uno strumento essenziale per avanzare delle ipotesi su come sia cambiato il rapporto con il mondo vegetale durante il neolitico, su come le conoscenze e le competenze rispetto alle piante siano cresciute e cambiate, e su come tutto questo abbia a che fare con la nascita della medicina.

Per meglio valutare il significato dei dati etnobotanici è però necessario soffermarsi sulla terminologia che utilizzeremo, e sui problemi che derivano dalla necessità di semplificare la complessità. Negli studi quantitativi in antropologia è necessario, infatti, utilizzare categorie specifiche, appunto per permettere uno studio analitico. Questa necessità si scontra però con problemi definitori e di demarcazione, in particolare su due assi, quello del continuum tra piante alimentari e piante medicinali (asse AM), e quello del continuum tra piante selvatiche e piante coltivate (asse SC).[7]

L’asse AM

Anche se è sempre possibile identificare degli esemplari delle due categorie che non lasciano spazio all’ambiguità (ad esempio grano come alimento e Atropa belladonna come medicina), i confini tra piante alimentari e medicinali non sono sempre così netti. Alcuni autori sostengono, infatti, che questa distinzione è in realtà largamente assente nelle popolazioni indigene o è comunque fortemente dipendente dal contesto.

E’ necessario quindi introdurre nuove definizioni che descrivano senza semplificare eccessivamente il continuum alimentare-medicinale. Pieroni e Quave propongono tre categorie:[8]

  1. Piante usate sia come medicine sia come cibo, ma senza alcuna correlazione tra i due usi.
  2. Piante che a parte gli scopi alimentari o edonistici hanno anche altri effetti sul corpo (depurativi, alterativi, tonici del sangue, antiossidanti, ecc.): definiti come cibi funzionali.
  3. Piante che vengono consumate chiaramente come alimento ma per ottenere effetti specificamente terapeutici: definiti come cibi medicinali o medicine alimentari.

L’asse SC.

Altrettanto complessa è la categorizzazione delle piante in base al loro rapporto con l’uomo in termini di gestione. Anche in questo caso i poli estremi sono facilmente identificabili (piante selvatiche e piante addomesticate e coltivate) ma il territorio intermedio presenta molte sfumature e sovrapposizioni. Ad esempio, ci dice la Price, le piante eduli semi-selvatiche, o selvatiche ma gestite e non addomesticate, sono una caratteristica primaria dei sistemi agricoli. Allo stesso tempo sono differenti dalle piante selvatiche dei cacciatori-raccoglitori, perché provengono molto spesso da aree di successione, ruderali, bordi stradali, ecc., piuttosto che dalla foresta.

Vari autori propongono un elenco di categorie basato sulle differenti pratiche agricole e sulla selezione che operano sulle piante:[9]

  1. Piante addomesticate: geneticamente modificate e completamente dipendenti dall’uomo.
  2. Piante semiaddomesticate: parzialmente modificate e non compeltamente dipendenti dall’uomo.
  3. Piante coltivate: introdotte in sistemi agronomici e mantenute in letti di coltivazione.
  4. Piantegestite: protette grazie all’attività umana e aiutate nella competizione con le altre piante.
  5. Piante selvatiche in senso stretto: usate ma non coltivate né gestite.

Nota Bene: le piante di cui ai punti 2, 4 e 5 possono essere definite come piante selvatiche in senso lato.

Per portare un esempio calato nella realtà, Hanazaki e collaboratori, in uno studio sulle piante alimentari e medicinali in Amazzonia, distinguono 4 tipi di rapporto con le piante:[10]

  1. Piante con nessuna o ridotta gestione umana, tutte native, raccolte nella foresta, e che costituiscono il 26% delle piante totali utilizzate.
  2. Piante facilitate dalla gestione umana, native all’80%, raccolte in molti ambienti diversi, nella foresta, nelle coltivazioni a debbio, nelle zone ruderali e nelle vicinanze delle case. Costituiscono il 12% delle piante totali utilizzate.
  3. Piante coltivate ma raramente, native solo al 20%, raccolte in molti ambienti diversi ma non nella foresta: coltivazioni a debbio, nelle zone ruderali, nelle vicinanze delle case e negli orti. Costituiscono la maggior parte (56%) delle piante utilizzate.
  4. Piante coltivate. Native solo al 20%, raccolte nelle zone di coltivazione a debbio. Costituiscono solo il 6% delle piante totali utilizzate.[11]

La formazione del sapere relativo alle piante nel passaggio all’agricoltura

Logan e Dixon, cercando di dare risposta a questa domanda, propongono che le popolazioni indigene di cacciatori-agricoltori utilizzino una percentuale limitata dei taxa disponibili, scelta tramite un processo non casuale di selezione basato su caratteristiche poco usuali che permettono di distinguere facilmente alcune piante da altre. Operando questa forte selezione, tralasciando moltissime piante e concentrandosi solo su poche specie “interessanti”, da investigare, l’uomo “trasforma un problema intrattabile in un dominio di indagine gestibile”.[12]

Nancy Turner identifica alcune caratteristiche che definiscono la “salienza percettiva”, l’ ”ovvietà”, delle piante “interessanti”:[13]

  • Essere ubiquitarie
  • Morfologia, colori, aromi, sapori rari o facilmente individuabili
  • La capacità di causare forti reazioni (ad esempio dermatite da contatto)
  • L’essere libere da infestazioni
  • Il fatto che altri animali se ne cibino,
  • Il possedere caratteristiche antropomorfe

Una volta individuate, queste caratteristiche servono come strumenti euristici per categorizzare altre piante, all’interno di una tassonomia locale trasversale alla tassonomia scientifica. Ad esempio, le piante allucinogene del genere Datura [Solanaceae] sono amare, piccanti e nauseanti, e queste caratteristiche sono state utilizzate dalle popolazioni indigene per predire proprietà allucinogene in altre specie che possedevano le stesse caratteristiche.

Le conoscenze e le tassonomie popolari sono molto più sensibili al contesto e meno generalizzabili delle tassonomie scientifiche, per cui è del tutto probabile che questi processi di acquisizione del sapere e di generalizzazione abbiano portato ad incidenti (intossicazioni o avvelenamenti), ad esempio quando spostandosi da aree conosciute a nuovi territori, con nicchie ecologiche diverse, i raccoglitori utilizzano piante che paiono sovrapponibili a quelle conosciute ma ne differiscono, a volte con risvolti tossici.[14]

Un’occhiata ai dati

Louis Grivetti, uno degli autori che più hanno contribuito a definire il campo della ricerca tra cibo e medicina, riporta i risultati di uno studio effettuato nel 1973 in Botswana, nel deserto del Kalahari, tra i popoli Tswana, ed in particolare con i baTlokwa.[15]

I baTlokwa sono coltivatori con una vasta conoscenza delle piante selvatiche commestibili (Grivetti registra più di duecento specie conosciute),[16] che servono a sostenere l’alimentazione della popolazione in tempi di scarsità, quando le cultivar alimentari tipiche scompaiono per la siccità o per una stagione particolarmente povera.

Alcune di queste piante sono semplici cibi spontanei, altre sono dei cibi-medicina, altre ancora sono delle piante consumate come cibo solo in situazioni di emergenza alimentare, i cosiddetti cibi da carestia (ad esempio i frutti ed I semi di “magabalka” [Cucumis myriocarpus Naudin — Cucurbitaceae], solitamente usati come foraggio, o le foglie di “moologa” [Croton gratissimus Burch. — Euphorbiaceae], normalmente usata come pianta magica, o la radice di “motlopi” [Boscia albitrunca (Burch.) Gilg & Benedict Capparaceae o Brassicaceae], usata al posto del sorgo [Sorghum arundinaceum (Desv.) Stapf — Graminae].

Che le piante selvatiche svolgano un ruolo importante per il sostentamento della popolazione è sottolineato, secondo l’autore, dal diverso destino delle popolazioni del Kalahari orientale e del Sahel:

“(p)er più di cento anni i baTlokwa del deserto del Kalahari orientale, nel Botswana, non hanno sofferto di carestie o di ripercussioni a livello sociale a causa della siccità. Tale successo alimentare in quest’area è dovuto all’equilibrio tra offerta ambientale e decisioni culturali. Il Kalahari orientale offriva una elevata diversità di piante selvatiche eduli, ed i baTlokwa utilizzavano regolarmente tali risorse. Il messaggio più importante che emerse dopo due anni di lavoro sul campo fu che la siccità non aveva causato carestie, e che una spiegazione per il disastro del Sahel [ovvero la tremenda carestia che colpì la regione del Sahel a seguito di una lunga siccità, proprio negli anni della ricerca nel Kalahari. NdT] era l’incapacità culturale a riconoscere ed utilizzare le risorse alimentari selvatiche disponibili — cibi che in precedenza erano stati utilizzati come sostentamento durante le siccità“.[17]

In una ricerca basata nello Swaziland gli autori notano che il 40% degli informatori usa il 50% e più di piante selvatiche per l’alimentazione, raccolte nei campi coltivati o gestite negli orti casalinghi. Gli autori scoprono altresì che i bambini mostrano maggiori competenze rispetto agli anziani, al contrario di ciò che Grivetti aveva notato nel Kalahari, e propongono che ciò sia dovuto al fatto che I bambini devono attraversare varie zone ecologiche diverse per andare a scuola, e sono quindi esposti ad una maggior diversità vegetale.[18] In Nigeria, tra gli Hausa, il 93% della popolazione gestisce e protegge le piante infestanti, ed il 50% del cibo vegetale viene raccolto nel selvatico (nello specifico 39 specie raccolte negli orti familiari, 6 specie raccolte lungo i bordi dei campi e dei sentieri, e 16 specie raccolte nei terreni a gestione comunitaria).[19] Nel Burkina Faso Smith e collaboratori riportano che il 36% dei vegetali consumati nei villaggi (ed il 20% di tutti gli alimenti) sono selvatici.[20] Vainio-Mattila osserva che tra i Sambara in Tanzania i vegetali consumati includono 73 specie di piante selvatiche, ruderali o infestanti.[21]

In Kazakistan il 25% delle famiglie raccoglie piante selvatiche (bacche, bulbi, frutta, piante medicinali e funghi).[22]

Secondo la Price in Tailandia, nei terreni coltivati a riso (ed intorno ad essi), si riconoscono e raccolgono 77 specie di piante selvatiche.[23] Inoltre quasi il 90% delle famiglie gestisce piante non domesticate negli orti familiari.

La raccolta delle piante è demandata quasi totalmente alle donne, per le quali questa attività è secondaria ad altre. Dato infatti che le donne svolgono molte attività legate alla casa, alla famiglia, al gruppo sociale, e sono per questa ragione costrette a muoversi sul territorio e a trapassare molti confini ecologici, esse entrano in contatto con molte specie diverse di piante (in maniera simile a quanto visto per i bambini nello Swaziland) che vengono raccolte “sulla via per” fare qualcosa d’altro.[24]

Nel Nepal centrale, nella comunità Chepang della zona di Shaktikhor, sul massiccio del Mahabarath, la maggior parte dei nuclei familiari (ca. il 90%) usa le risorse forestali o non coltivate a scopo medicinale, per venderle al mercato, o per sopperire ad una vera e propria mancanza di cibo (il 75% dei nuclei familiari), e gestisce in qualche modo le piante selvatiche, sia attraverso una protezione in situ, sia attraverso processi preagricoli di domesticazione. Tutte le famiglie stoccano, oltre ai cereali coltivati, piante selvatiche, in particolare Githa (Dioscorea bulbifera L. — Dioscoreaceae) e Bhyakur (Dioscorea deltoidea Wall. ex Griseb.) e in minor misura dei germogli di bambù (Bambusa nepalensis Stapleton – Poaceae).

In generale le donne Chepang sono leggermente più competenti degli uomini rispetto alle piante selvatiche, ma la differenza non è molto significativa. E’ possibile che le ridotte competenze agricole dei Chepang possano in parte spiegare questa uniformità tra uomini e donne: non avendo sviluppato molto la coltivazione degli orti familiari, forse è venuta a mancare alle donne Chepang la possibilità di aumentare le loro competenze sulle piante degli ambienti di transizione.[25]

In uno studio sulla zona amazzonica Hanazaka e collaboratori sottolineano come la foresta contribuisca solo al 28% per le specie selvatiche consumate, mentre le zone ruderali e I terreni intorno alle case contribuiscono per il 52%, e gli orti e le coltivazioni a debbio per il 20%.[26] In maniera simile Dufour e Wilson notano che il 41% delle piante eduli amazzoniche sono alberi, di cui il 50% proviene dalla coltivazione a debbio.[27] Emerge quindi l’importanza delle zone a vegetazione successionale, a crescita secondaria.[28]

A Cuba su circa 260 specie di piante medicinali e alimentari, solo 25 sono delle cultigen. Tra le non-cultigen, 82 (di cui 39 cibi-medicina) provengono da raccolta in area agricola, 36 (di cui 6 cibi-medicina) dai bordi dei campi, e 56 (di cui 16 cibi-medicina) dalle terre a gestione comunitarie.[29] La ricerca di Vandebroek e Sanca sulle Ande boliviane ha riscontrato che il 58% delle specie medicinali-alimentari è selvatica, e che le famiglie con la miglior sovapposizione tra uso medicinale ed alimentare sono Lamiaceae, Fabaceae, Asteraceae, e Solanaceae.[30]

Nello studio di Ana Ladio sull’utilizzo delle piante selvatiche in una comunità Mapuche della Patagonia nordoccidentale si evidenzia che:

  • Le piante medicinali-alimentari sono raccolte più vicino agli insediamenti
  • Viene dedicato meno tempo alla raccolta delle piante medicinali-alimentari rispetto a quelle alimentari
  • Vengono raccolte quantità minori di piante medicinali-alimentari rispetto a quelle alimentari.[31]

La stessa autrice nota una buona sovrapposizione tra piante alimentari e piante medicinali, e delle chiare differenze chemiotassonomiche tra piante medicinali-alimentari (evolutivamente più recenti) e piante esclusivamente alimentari (evolutivamente più antiche).[32]

Proprio quest’ultimo dato pare particolarmente interessante. Ritornando a quanto accennato nel capitolo sull’evoluzione dei sistemi di difesa chimici delle piante, il rapporto tra la percentuale di piante medicinali presenti in una famiglia botanica ed il livello evolutivo della famiglia stessa sembra coerente con quanto sappiamo sull’evoluzione.

Prendendo per buona questa ipotesi, il riconoscimento da parte dell’uomo di questo trend dovrebbe avere un effetto sull’evoluzione antropogenica, nel senso che la selezione da parte delle popolazioni umane delle piante “utili” tenderebbe a far risaltare maggiormente questa distinzione.

Ad esempio: “nella discussione sull’addomesticamento è di fondamentale importanza includere (nell’analisi NdT) piante con potenziale farmacologico (e non solo quelle a contenuto calorico NdT) in modo da comprendere realmente il continuum delle relazioni uomo-pianta”.[33] Nel calcolo costi/benefici della raccolta piuttosto che della coltivazione è riduttivo quindi utilizzare nell’equazione solo importi calorici senza tenere presente fattori extranutrizionali. E’ probabile che le scelte effettuate dai raccoglitori dipenderenno dalla massimizzazione delle calorie e dalla minimizzazione delle spese energetiche, ma anche dalla necessità di minimizzare gli antinutrienti e di massimizzare gli xenobiotici vantaggiosi.

Questa riflessione dovrebbe ricordarci che i processi di addomesticazione sono di natura evolutiva e mostrano molti stadi e condizioni intermedie lungo un gradiente, lungo il quale “ gli esseri umani alterano la struttura genetica delle popolazioni di piante utili, modificano la loro distribuzione ed abbondanza attraverso la gestione non agricola.[34] Questo significa che le popolazioni non modificano solo il paesaggio tramite la coltivazione ma modificano anche l’ambiente dove vivono e vengono raccote le piante spontanee gestite con modalità ‘preagricole’. In ogni momento dato l’interazione uomo-pianta è il risultato di un graduale processo di aumento dell’intensità della gestione delle piante e dell’ambiente”.[35]

Il paradosso botanico-dietetico

Nonostante comunemente si ritenga che la foresta contenga un tesoro nascosto di piante medicinali, è probabile che la maggior parte di quelle usate dai cacciatori-raccoglitori venga (ora come un tempo) dalla prateria e dai bordi forestali, e che siano le piante infestanti o ruderali a giocare il ruolo più importante.

A questa conclusione arrivano molti autori sia dopo una analisi approfondita dei testi di etnobotanica che riportano la provenienza delle piante medicinali.[36] Sia a seguito di pubblicazioni specifiche sul rapporto tra piante medicinali e infestanti. Hanazaki e collaboratori hanno ad esempio evidenziato nel loro studio sull’utilizzo delle piante alimentari e medicinali in Amazzonia, come la foresta contribuisca al 28% delle specie utilizzate, le zone ruderali e i dintorni delle case al 52%, gli orti e le coltivazioni a debbio al 20%.[37] In un altro articolo sulle piante medicinali utilizzate dai nativi americani gli autori mostrano come esista una forte preferenza per le piante infestanti: in Nord America, le infestanti rappresentano solo il 9.6% della flora, ma il 26% della flora medicinale, e in Chiapas le infestanti sono il 13% della flora ed il 34% della flora medicinale.[38]
Sette delle dodici famiglie di invasive più importanti sono famiglie molto importanti come medicinali: Asteraceae, Fabaceae, Convolvulaceae, Euphorbiaceae, Chenopodiaceae, Malvacae, e Solanaceae.[39]

Una analisi del lessico relativo al mondo vegetale rivela inoltre che spesso le società orticulturali hanno una folk taxonomy e un ventaglio di termini (su piante medicinali e malattie) in media più ricco dei cacciatori raccoglitori puri.[40] Sembrerebbe quindi, dice la Price, che l’allontanarsi dalla dipendenza totale dalla foresta come fonte di cibo comporti un aumento, e non una diminuzione, della diversità di piante consumate, che l’avvento dell’agricoltura abbia comportato certamente una perdita in biodiversità selvatica (tanto maggiore quanto più intensa/iva l’agricoltura), ma che paradossalmente in certi casi abbia aumentato la biodiversità alimentare, delle piante da carestia e delle piante cibo-medicina.[41]

Le ragioni di questo paradosso sono varie, ed includono:

1. Gli ambienti agricoli ed orticulturali hanno biodiversità comparabile o più elevata a quella della foresta.[42] L’impatto degli insediamenti umani e dell’agricoltura sul territorio avrebbe creato zone periagricole, zone di confine tra foresta e coltivazioni, e ambienti disturbati dall’attività umana, come campi, bordi, sentieri, ecc. che offrono un habitat importante per molte specie colonizzatrici, infestanti e ruderali. Questo processo avrebbe aumentato il numero di specie presenti e facilmente osservabili. Alcune di queste piante vennero addomesticate o rimasero comunque all’interno del continuum tra piante alimentari e medicinali, rivestendo ora un ruolo ora l’altro a seconda delle condizioni contingenti, andando ad arricchire il lessico delle popolazioni locali. Come ha rilevato la Price spesso la maggior diversità di piante utilizzate dipende dal fatto che le donne, per il ruolo da esse svolto nelle società tradizionali, si occupano della casa e del giardino e quindi sono in diretto contatto con tutte le aree transizionali tra foresta e coltivazioni.[43]

2. Le infestanti sono nella maggior parte dei casi piante a rapida crescita, opportunistiche, colonizzano rapidamente un’area e rapidamente muoiono. Per questa ragione esse si basano per la loro difesa sulla produzione di composti chimici qualitativi (metaboliti molto attivi e tossici come alcaloidi, terpeni, glicosidi cardiaci, ecc.) piuttosto che composti quantitativi (tannini e lignine, antinutrizionali ma non tossici), più tipici nelle piante perenni non successionali (piante da climax).[44]

3. La dieta agricola si era fortemente semplificata, passando dalle decine di piante usate come alimento dai cacciatori-raccoglitori a solo due-tre piante (a volte addirittura solo una, come nel caso del mais [Zea mays L. — Graminae] in Mesoamerica) alla base dell’alimentazione degli agricoltori.[45] Questa semplificazione portò probabilmente al desiderio di usare le piante aromatiche e resinose nella preparazione degli alimenti, per diversificare I sapori, e questo a sua volta portò ad una maggior complessità del lessico legato a sapori ed odori.

4. La conoscenza delle piante spontanee, da carestia, ecc. Funzionava da meccanismo di sicurezza in caso le coltivazioni non riuscissero a sostenere la popolazione.[46]

Conclusioni

Che conclusioni si possono trarre dai dati appena esposti?
Il concetto che la nascita dell’agricoltura e la natura ambigua delle infestanti (al limine tra alimenti o medicine) abbiano influenzato il crescere della conoscenza sulle piante sembra supportato dai dati, e permette ad alcuni autori di formulare nuove ipotesi sulla nascita di questa conoscenza, differenti da quelle unilineari che fanno dipendere la “scoperta” delle piante medicinali dal loro utilizzo come cibo. Etkin e Ross propongono ad esempio, sulla base del loro studio sulla dieta degli Hausa in Nigeria, che le piante possano essere prima identificate come portatrici di “salienza percettiva”, vengano quindi manipolate ed entrino nel continuum tra spontaneo e coltivato, vengano usate come medicine e successivamente, sotto la pressione delle emergenze, diventino anche “cibi selvatici” o “da carestia”; successive manipolazioni possono poi spostare le specie più adatte verso la domesticazione ed il passaggio a pianta decisamene alimentare.[47]

Da questa prospettiva risulta allora più chiaro il perché, ad esempio, la maggior parte delle piante con azione sulla fertilità e riproduzione umane in varie parti del mondo siano delle piante invasive, coltivate o addomesticate, ed anche perché siano spesso usate come spezie: peperoncino, menta spicata, cipolla, aglio, chiodi di garofano, noce moscata, cumino, pepe, avocado, ananas, papaia, puleggio, sesamo, agrumi.[48]

Certamente che non è possibile tracciare dei percorsi lineari nel rapporto uomo-piante. Percorrendo lo spettro tra caccia e raccolta ed agricoltura spinta, ciò che colpisce è che seppure la dieta e le competenze naturali degli agricoltori intensivi siano certamente di inferiore qualità rispetto a quella dei cacciatori-raccoglitori, in alcuni degli stadi di passaggio tra i due poli le competenze sono aumentate, e non diminuite, e probabilmente anche la dieta, fino a quando le piante selvatiche ricche in composti farmacologicamente attivi sono rimaste parte integrante della dieta, seppure iniziando a distinguersi dalle piante esclusivamente alimentari.

L’ipotesi di Johns sulla nascita della medicina grazie alla possibilità di scindere le piante alimentari da quelle medicinali sembra plausibile, ma una divisione assoluta dei due campi, anche materialmente, si avvera solo con l’agricoltura intensiva dell’epoca contemporanea, e coincide con una perdita in qualità dell’alimentazione. Nella estremizzazione dello spettro (piante solo alimentari, solo caloriche, strippate di ogni contenuto allelochimico, e farmaci estremamente attivi, monomolecolari, estremamente potenti) si sono perse (si stanno perdendo) le competenze rispetto a quel mondo ambiguo e variegato nel quale possiamo ingerire alimentandosi sostanze farmacologicamente attive. Ma durante il processo che ci ha portato qui l’uomo ha imparato a distinguere I due campi pur continuando ad utilizzare piante-medicina nell’alimentazione.


Note

[1] Johns T (1990) The Origins of Human Diet and Medicine. University of Arizona Press

[2] Distinzione che però si esplicita solo nell’era moderna, se è vero che per tutta l’antichità classica ed il medioevo i due campi sono ancora molto sovrapposti

[3] Johns 1990 op. cit.

[4] Sarebbe ad esempio scorretto pensare ai cacciatori-raccoglitori come a dei meri sfruttatori del territorio nel quale raccolgono il cibo; anche essi, come gli agricoltori, lo gestiscono, seppure in maniera differente. (Logan M.H., Dixon A.R. “Agricolture and the acquisition of medicinal plants knowledge”. In N.L., Etkin (ed.) (1994) Eating on the wild side: The pharmacologica, ecological, and social implications of using noncultigens pp. 25-45; Moerman D.M. “North american food and drug plants”. In N.L., Etkin (Ed.), 1994 op. cit. pp. 166-184; Diamond, Jared (1997) Guns, Germs, and Steel: the fates of human societies. W.W. Norton & Co. Ed italiana Armi, acciaio e malattie: breve storia del mondo negli ultimi tredicimila anni. Torino, Einaudi 2000).  I Siona-Secoya del bacino del Rio delle Amazzoni, ad esempio, derivano il loro cibo principalmente da piante coltivate (in giardini che ricavano nell’intorno della foresta e vicino ai villaggi), da caccia e pesca, ma consumano frequentemente anche i frutti di piante spontanee (in realtà meglio descritte come “antropofite” o invasive) come le palme Ita [Mauritia flexuosa L.f.] e Tucuma [Astrocaryum tucuma C. Martius], il Tacay [Caryodendron orinocense Karsten — Euphorbiaceae], le Inga spp. [Fabaceae], lo Zapote [Quararibea spp. — Bombacaceae], Pseudolmedia laevis [Moraceae], Physalis angulata [Solanaceae] e Phytolacca rivinoides [Phytolaccaceae]. (Vickers WT (1994) “The health significance of wild plants for the Siona and Secoya”. In NL Etkin (1994) pp. 143-165)

[5] Etkin, NL (2006) Edible medicines: An ethnopharmacology of food. Arizona University Press

[6] La separazione tra i due campi non è netta, sono cioè esistiti cacciatori-raccoglitori sedentari, agricoltori non sedentari. E’ probabile che la percentuale di cacciatori-raccoglitori sedentari fosse molto più elevata 15.000 anni fa (quando tutti erano cacciatori-raccoglitori.) che in tempi moderni, perché le risorse erano maggiori

[7] Hanazaki N, Peroni N, Begossi A (2006) “Edible and healing plants in the ethnobotany of native inhabitants of the Amazon and Atlantic forest area of Brazil”. In A. Pieroni, LL Price (eds.) Eating and Healing: Traditional food as medicine. Food Products Press, New York

[8] Pieroni, A. e Quave, C. “Functional foods or food medicines? On the consumption of wild plants among Albanians and Southern Italians in Lucania” in A., Pieroni e L., Leimar Price (eds.)  (2006) Eating and Healing, Haworth Press,  p. 110

[9] Price LL (2006) “Wild food plants in farming environment”s. In A. Pieroni, LL Price (eds.) Eating and Healing: Traditional food as medicine. Food Products Press, New York.; Johns T (1994) Ambivalence to the palatability factors in wild foods plants. In NL Etkin (ed.) Eating on the wild side: The pharmacological, ecological, and social implications of using noncultigens. Arizona University Press, pp. 46-61e Huss-Ashmore e Johnson 1994 “Wild plants as cultural adaptations to food stres” in NL Etkin (1994) op. cit. pp.

[10] Hanazaki et al. (2006) op. cit.

[11] Si nota quindi che le piante non gestite sono tutte native e coincidono quasi perfettamente con le piante della foresta, mentre le piante coltivate sono per la maggior parte introdotte e si trovano esclusivamente nelle zone ad addebbio

[12] Logan, Dixon, 1994 op. cit.

[13] Turner N.J., (1988) “The importance of a rose: Evaluating the cultural significance of plants” American Anthropology 90:272-290

[14] Grivetti LE (2006) “Edible wild plants as food and as medicine: Reflections on thirty years of field works” in A. Pieroni, LL Price (eds.) Eating and Healing: Traditional food as medicine. Food Products Press, New York

[15] Grivetti LE (2006) “Edible wild plants as food and as medicine: Reflections on thirty years of field works” in A. Pieroni, LL Price (eds.) Eating and Healing: Traditional food as medicine. Food Products Press, New York

[16] L’autore nota anche una perdita di competenze da parte dei giovani a causa di un ridotto trasferimento verticale delle conoscenze tradizionali, un dato riportato da moti altri autori

[17] Grivetti LE (2006) “Edible wild plants as food and as medicine: Reflections on thirty years of field works” in A. Pieroni, LL Price (eds.) (2006) Eating and Healing: Traditional food as medicine. Food Products Press, New York. Questa indagine stimola in Grivetti alcune domande centrali rispetto al ruolo delle piante selvatiche in società in transizione tra caccia-raccolta e agricoltura: le piante selvatiche eduli erano centrali o secondarie rispetto al mantenimento della qualità dell’alimentazione? Esse duplicavano o complementavano l’energia ed i nutrienti derivanti dalle piante coltivate? E’ lo stesso autore a proporre che le competenze sulle piante selvatiche abbiano rappresentato per i baTlokwa una risorsa di duttilità ed adattabilità alimentare che ha aumentato la capacità di rispondere alle emergenze e la variabilità alimentare

[18] Ogle BM e Grivetti LE (1985) “Legacy of the chamaleon. Edible wild plants in the kingdom of Swaziland, southern Africa. A cultural, ecological, nutritional study. Part 1: Introduction, objectives, methods, Swazi culture, landscape, and diet”. Ecology of Food and Nutrition 17:1-30

[19] Etkin NL, e Ross PJ (1994) “Pharmacological implications of “wild” plants in Hausa diet”. In NL Etkin (ed.) 1994 op. cit. ; Humphry C, Clegg MS, Keen C, e Grivetti LE (1993) “Food diversity and drought survival. The Hausa example”. International Journal of Food Sciences and Nutrition 44:1-16

[20] Le piante più comuni sono il baobab [Adansonia digitata L. — Bombaceae], la marula [Sclerocarya birrea (A. Rich.) Hochst. — Anacardiaceae] e il tamarindo [Tamarindus indica L. — Leguminosae]. La raccolta viene effettuata soprattutto (81%) da donne e ragazze per uso familiare, mentre gli uomini raccolgono piante solo per uso personale. cfr. Smith GC, Clegg MS, Keen CL e Grivetti LE (1995) “Mineral values of selected plant foods common to southern Burkina faso and to Niamey, Niger, West Africa”. International Journal of Food Sciences and Nutrition 47:41-43; Smith GC, Duecker SR, Clifford AJ, e Grivetti LE (1996) “Carotenoid values of selected plant foods common to southern Burkina Faso, West Africa”. Ecology of Food and Nutrition 35:43-58

[21] Vainio-Mattila K (2000) “Wild vegetables used by the Sambara in the Usambara Mountains, NE Tanzania”. Annales Botanici Fennici 37:57-67

[22] Dalsin MF, Laca EA, Abuova G, e Grivetti LE (2006) “Livestock-owning households of Kazakstan. Part 1: Food systems”. Ecology of Food and Nutrition 41:301-343

[23] Price LL (2006) op. cit.

[24] Ogle BM e Grivetti LE (1985) op. cit.

[25] Rijal, Arun. (2008) “A Quantitative Assessment of Indigenous Plant Uses Among Two Chepang Communities in the Central Mid-hills of Nepal.” Methods 6: 395-404

[26] Hanazaki, Peroni, Begossi (2006) op. cit.

[27] Dufour DL e Wilson WM (1994) “Characteristics of “wild” plant foods used by indigenous populations in Amazonia”. In NL Etkin (ed.) 1994 op. cit.

[28] Vickers 1994 op. cit.

[29] Volpato G, Godìnez D (2006) “Medicinal foods in Cuba: Promoting health in the household”, in A. Pieroni, LL Price (eds.) Eating and Healing: Traditional food as medicine. Food Products Press, New York

[30] Vandebroek I e Sanca S (2006) Food medicines in the Bolivian Andes (Apillapampa, Cochabamba Department) in A. Pieroni, LL Price (eds.) op. cit.

[31] Secondo l’autrice questa differenza è spiegata dalla teoria del rapporto tra contenuto calorico della pianta ed energia spesa per ottenerla, ma la teoria non tiene conto delle possibili variabili extranutrizionali

[32] L’autrice riporta che tra le piante alimentari e medicinali (che comprendono il 63% di tutte le specie selvatiche) le famiglie botaniche più rappresentate sono le Apiaceae (con 4 specie), le Asteraceae e le Oxalidaceae (2 specie), e le Lamiacese e Caryophylaceae. Lo schema è diverso per le piante eduli: le famiglie più rappresentate sono: Araucariaceae, Berberidaceae, Rosaceae, Celastraceae, Myrtaceae, e Saxifragaceae. cfr. Ladio AH (2006) “Gathering of wild plant foods with medicinal use in a Mapuche community of Northwest Patagonia” in A. Pieroni, LL Price (eds.) op. cit.

[33] Hanazaki, Peroni, Begossi (2006) op. cit.

[34] Harlan JR (1995) The living fields. Our agricoltural heritage. Cambridge, Cambridge University Press

[35] Hanazaki, Peroni, Begossi (2006) op. cit.

[36] Alcorn, J.B. Huastec Maya ethnobotany. University of Texas Press, Austin, Texas, 1984, pp. 311–312.; Arvigo, R., Balick, M. Rainforest Remedies: 100 Healing Herbs of Belize. Lotus Press, Twin Lakes, Wisconsin, 1993; Caniago, I. & Siebert, S.F. (1998) “Medicinal plant ecology, knowledge and conservation in Kalimantan, Indonesia”. Econ. Botany 52:229–250; Frei, B., Sticher, O. & Heinrich, M. (2000) “Zapotec and Mixe use of tropical habitats for securing medicinal plants in Mexico”. Econ. Botany 54:73–81; Posey, D.A. “A preliminary report on diversified management of tropical forest by the Kayapó Indians of the Brazilian Amazon”. In: Prance, G.T., Kallunki, J.A. (Ed.), Ethnobotany in the Neotropics. New York Botanical Garden, New York, 1984, pp. 112–126

[37] Hanazaki, Peroni, Begossi (2006) op. cit.

[38] Stepp J. R., F.S. Wyndham e R.K. Zarger (eds.) Ethnobiology and biocultural diversity.  Proceedings of the Seventh International Congress of Ethnobiology, University of Georgia Press, 2002; Moerman, D.E. (2001) “The importance of weeds in ethnopharmacology” Journal of Ethnopharmacology, 1(75): 19-23

[39] Holm L. (1978) “Some characteristics of weed problems in two worlds”. Proc. West. Soc. Weed Sci. 31:3–12

[40] Meilleur BA (1994) “In search of ‘keystone societies’ ”. In NL Etkin (1994) op. cit.

[41] Price LL (2006) op. cit. A movement away from dependance on plants from forest as food and medicine appears to be accompanied by an increase in comnsumption of plant foods and medicines gathered from the farming environment, and that this occurs as a cross-cultural phenomenon. Thus as agricolture grows and old forest growth declines and is farther and farther away from the dwellings (and gatherers) there is growing reliance on plant foods fron environments disturbed by human activitiy, individual fields, border areas, footh paths etc. Undoubtedly, species composition changes with land use change and agronomic practices. New species are brought into the diet through a process of experimentation, but not without difficulty.

[42] Conklin H (1961) “The study of shifting cultivation”. Current Anthropology 1:27-61; Kunstader P (1978) “Ecological modification and adaptation: An ethnobotanical view of Lua’swiddeners in northwesterne Thailand”. In R. Ford (Ed.) The nature and status of ethnobotany. Ann Arbor: University of Michigan Museum of Anthropology

[43] Price LL (2006) op. cit.

[44] Stepp (2002) op. cit.; Moerman (2001) op. cit.

[45] Per inciso, questa semplificazione ha in certi casi portato ad un peggioramento dello stato di salute, se è vero che, come indicano i dati sulle popolazioni di cacciatori-raccoglitori ancora esistenti, gli agricoltori lavoravano di più ed erano peggio nutriti, con un minor tasso di sviluppo neonatale, un maggior tasso di malattie (di solito con maggiori infestazioni parassitarie), e minor longevità rispetto ai cacciatori-raccoglitori (probabilmente per un impoverimento della varietà di nutrienti e composti secondari ingeriti). Diamond 1997 op. cit.; Johns 1990 op. cit.; Kiple 1993 op. cit.; Vickers 1994 op. cit.

[46] Logan, Dixon, 1994 op. cit.

[47] Etkin N.L. (Ed.) 1996 op. cit.

[48] Va sottolineato che l’identificazione delle piante come medicinalmente attive da parte delle popolazioni non coincide necessariamente con una loro effettiva efficacia. L’effetto placebo e le influenze culturali sono sempre presenti.

Tidbits: un gusto repellente

Un altro tassello del mosaico complesso che descrive il funzionamento ed il ruolo dei sensi chimici. Naturalmente si parla di recettori TRP (Transient Receptor Potential) descritti altre volte (qui uno recente) come importanti per la traduzione di segnali chimici alimentari in effetti fisiologici.

In due studi (uno pubblicato su Neuron ed il secondo su Current Biology) il team di Craig Montell, ha testato due repellenti per insetti (DEET e citronellale, una aldeide presente in mote spp. di Cymbopogon). In entrambi i casi la repellenza è fortemente correlata con la presenza e funzionalità dei canali TRP (ed altri), responsabili per la percezione gustativa (DEET) e olfattiva (DEET e citronellale) delle sostanze. Fondamentalmente la repellenza sarebbe una vera e propria reazione di disgusto verso il sapore e l’odore delle sostanze testate.

Three taste receptors on the insects’ tongue and elsewhere are needed to detect DEET. Citronellal detection is enabled by pore-like proteins known as TRP (pronounced “trip”) channels. When these molecular receptors are activated by exposure to DEET or citronellal, they send chemical messages to the insect brain, resulting in “an aversion response,” the researchers report.

“DEET has low potency and is not as long-lasting as desired, so finding the molecules in insects that detect repellents opens the door to identifying more effective repellents for combating insect-borne disease,” says Craig Montell, Ph.D., a professor of biological chemistry and member of Johns Hopkins’ Center for Sensory Biology.

Scientists have long known that insects could smell DEET, Montell notes, but the new study showing taste molecules also are involved suggests that the repellant deters biting and feeding because it activates taste cells that are present on the insect’s tongue, legs and wing margins.

“When a mosquito lands, it tastes your skin with its gustatory receptors, before it bites,” Montell explains. “We think that one of the reasons DEET is relatively effective is that it causes avoidance responses not only through the sense of smell but also through the sense of taste. That’s pretty important because even if a mosquito lands on you, there’s a chance it won’t bite.”

The Johns Hopkins study of the repellants, conducted on fruit flies because they are genetically easier to manipulate than mosquitoes, began with a “food choice assay.”

The team filled feeding plates with high and low concentrations of color-coded sugar water (red and blue dyes added to the sugar), allowing the flies to feed at will and taking note of what they ate by the color of their stomachs: red, blue or purple (a combination of red and blue). Wild-type (normal) flies preferred the more sugary water to the less sugary water in the absence of DEET. When various concentrations of DEET were mixed in with the more sugary water, the flies preferred the less sugary water, almost always avoiding the DEET-laced sugar water.

Flies that were genetically engineered to have abnormalities in three different taste receptors showed no aversion to the DEET-infused sugar water, indicating the receptors were necessary to detect DEET.

“We found that the insects were exquisitely sensitive to even tiny concentrations of DEET through the sense of taste,” Montell reports. “Levels of DEET as low as five hundredths of a percent reduced feeding behavior.”

To add to the evidence that three taste receptors (Gr66a, Gr33a and Gr32a) are required for DEET detection, the team attached recording electrodes to tiny taste hairs (sensilla) on the fly tongue and measured the taste-induced spikes of electrical activity resulting from nerve cells responding to DEET. Consistent with the feeding studies, DEET-induced activity was profoundly reduced in flies with abnormal or mutated versions of Gr66a, Gr33a, and Gr32a.

In the second study, Montell and colleagues focused on the repellent citronellal. To measure repulsion to the vapors it emits, they applied the botanical compound to the inside bottom of one of the two connected test tubes, and introduced about 100 flies into the tubes. After a while, the team counted the flies in the two tubes. As expected, the flies avoided citronellal.

The researchers identified two distinct types of cell surface channels that are required in olfactory neurons for avoiding citronellal vapor. The channels let calcium and other small, charged molecules into cells in response to citronellal. One type of channel, called Or83b, was known to be required for avoiding DEET. The second type is a TRP channel.

The team tested flies with mutated versions of 11 different insect TRP channels. The responses of 10 were indistinguishable from wild-type flies. However, the repellent reaction to citronellal was reduced greatly in flies lacking TRPA1. Loss of either Or83b or TRPA1 resulted in avoidance of citronellal vapor.

The team then “mosquito-ized” the fruit flies by putting into them the gene that makes the mosquito TRP channel (TRPA1) and found that the mosquito TRPA1 substituted for the fly TRPA1.

“We found that the mosquito-version of TRPA1 was directly activated by citronellal,” says Montell who discovered TRP channels in 1989 in the eyes of fruit flies and later in humans.

Montell’s lab and others have tallied 28 TRP channels in mammals and 13 in flies, broadening understanding about how animals detect a broad range of sensory stimuli, including smells and tastes.

“This discovery now raises the possibility of using TRP channels to find better insect repellants.”

There is a clear need for improved repellants, Montell says. DEET is not very potent or long-lasting except at very high concentrations, and it cannot be used in conjunction with certain types of fabrics. Additionally, some types of mosquitoes that transmit disease are not repelled effectively by DEET. Citronellal, despite being pleasant-smelling (for humans, anyway), causes a rash when it comes into contact with skin.

Tidbits: eugenolo

In un ancora più recente articolo su Applied and Environmental Microbiology, si esamina l’effetto antibatterico dell’eugenolo. E’ da molto tempo noto che questo composto (presente nell’olio essenziale di chiodi di garofano, di foglia di cannella, di alcune varietà di basilico, e in molte altre piante) mostra attività antibatterica diretta, come molti dei derivati volatili del percorso dell’acido shichimico, attraverso l’interazione con la membrana e la sua destabilizzazione o lisi. In questo articolo si osserva che anche concentrazioni al di sotto del livello inibitorio agiscono sui processi patologici associati alle infezioni batteriche. In particolare l’eugenolo sembra in grado di ridurre l’espressione di varie esoproteine (due enterotossine, SEA e SEB, e la toxic shock syndrome toxin 1) mediante azione a livello dell’espressiione genica.

Eugenol, an essential oil component in plants, has been demonstrated to possess activity against both Gram-positive and Gram-negative bacteria. This study examined the influence that subinhibitory concentrations of eugenol may have on the expression of the major exotoxins produced by Staphylococcus aureus. The results from a tumor necrosis factor (TNF) release assay and a hemolysin assay indicated that S. aureus cultured with graded subinhibitory concentrations of eugenol (16 to 128 µg/ml) dose dependently decreased the TNF-inducing and hemolytic activities of culture supernatants. Western blot analysis showed that eugenol significantly reduced the production of staphylococcal enterotoxin A (SEA), SEB, and toxic shock syndrome toxin 1 (the key exotoxins to induce TNF release), as well as the expression of {alpha}-hemolysin (the major hemolysin to cause hemolysis). In addition, this suppression was also evaluated at the transcriptional level via real-time reverse transcription (RT)-PCR analysis. The transcriptional analysis indicated that 128 µg/ml of eugenol remarkably repressed the transcription of the S. aureus sea, seb, tst, and hla genes. According to these results, eugenol has the potential to be rationally applied on food products as a novel food antimicrobial agent both to inhibit the growth of bacteria and to suppress the production of exotoxins by S. aureus.

Tidbits: Vinca

Qualche breve nota su alcuni articoli sbirciati in rete:

Un articolo appena pubblicato su PNAS illustra i meccanismi di sintesi, secrezione, compartimentazione ed escrezione degli alcaloidi della Vinca (Catharanthus roseus), e descrive gli effetti che questi meccanismi hanno sulla facilità (o meno) di ottenere farmaci per il trattamento dei tumori. Infatti, mentre i farmaci derivano dall’accoppiamento dei due alcaloidi catarantina e vindolina, i percorsi metabolici ed i meccanismi di secrezioni nella pianta risultano in una compartimentazione stretta che impedisce l’accoppiamento delle due molecole nella pianta. Una di esse, la catarantina, che mostra attività antifungina ed insettorepellente, viene secreta infatti nella cera cuticolare della foglia (dove queste attività hanno più senso), mentre la vindolina è presente esclusivamente all’interno delle cellule della foglia.

The monoterpenoid indole alkaloids (MIAs) of Madagascar periwinkle (Catharanthus roseus) continue to be the most important source of natural drugs in chemotherapy treatments for a range of human cancers. These anticancer drugs are derived from the coupling of catharanthine and vindoline to yield powerful dimeric MIAs that prevent cell division. However the precise mechanisms for their assembly within plants remain obscure. Here we report that the complex development-, environment-, organ-, and cell-specific controls involved in expression of MIA pathways are coupled to secretory mechanisms that keep catharanthine and vindoline separated from each other in living plants. Although the entire production of catharanthine and vindoline occurs in young developing leaves, catharanthine accumulates in leaf wax exudates of leaves, whereas vindoline is found within leaf cells. The spatial separation of these two MIAs provides a biological explanation for the low levels of dimeric anticancer drugs found in the plant that result in their high cost of commercial production. The ability of catharanthine to inhibit the growth of fungal zoospores at physiological concentrations found on the leaf surface of Catharanthus leaves, as well as its insect toxicity, provide an additional biological role for its secretion. We anticipate that this discovery will trigger a broad search for plants that secrete alkaloids, the biological mechanisms involved in their secretion to the plant surface, and the ecological roles played by them.

Polifenoli in bottiglia

Leggendo questo lancio di agenzia sul 240 raduno nazionale della American Chemical Society mi è subito venuto in mente il bel post meristemico sul fato dei polifenoli una volta estratti nella fatidica tazza di tè verde. Nel post si spiegava in dettaglio cosa succedesse dal punto di vista chimico alla classe chimica delle catechine, ed in particolare come la loro stabilità fosse molto bassa, e variasse molto per effetto “della temperatura, del pH, dell’esposizione a luce ed ossigeno, del tempo e del tipo di acqua in cui sono solubilizzate.”

Ebbene, nel report alla American Chemical Society (qui il programma del raduno), i ricercatori Shiming Li (stipendiato dalla WellGen, Inc, una azienda di biotecnologie alimentari) e Chi-Tang Ho hanno riportato che il livello di polifenoli nei prodotti commerciali imbottigliati a base di tè (verde e nero) è estremamente basso, a volte praticamente insignificante, rispetto a quanto si potrebbe assumere bevendo una tazza di tè fresca fatta in casa. Per dare un esempio della magnitudine della differenza, una generica tazza di tè (riportano i ricercatori) può contenere da 50 a 150 mg di polifenoli. I sei tè commerciali analizzati (bottiglie da circa mezzo litro, diciamo da 3 a 4 tazze) contenevano 81, 43, 40, 13, 4, e 3 mg. di polifenoli!

Anche partendo dal livello più basso per tazza di tè (50 mg) e da quello più elevato per bottiglia (81 mg) il prodotto commerciale contiene la metà dei polifenoli del tè fatto in casa. Se prendiamo poi in esame i poli estremi, (150 mg per tazza e 3 mg per bottiglia) dovremmo bere 40 bottiglie per assorbire lo stesso ammontare di polifenoli di una tazza.

—————————————————————————————

BOSTON, Aug. 22, 2010 — The first measurements of healthful antioxidant levels in commercial bottled tea beverages has concluded that health-conscious consumers may not be getting what they pay for: healthful doses of those antioxidants, or “poylphenols,” that may ward off a range of diseases.

Scientists reported here today at the 240th National Meeting of the American Chemical Society (ACS) that many of the increasingly popular beverages included in their study, beverages that account for $1 billion in annual sales in the United States alone, contain fewer polyphenols than a single cup of home-brewed green or black tea. Some contain such small amounts that consumers would have to drink 20 bottles to get the polyphenols present in one cup of tea.

“Consumers understand very well the concept of the health benefits from drinking tea or consuming other tea products,” said Shiming Li, Ph.D., who reported on the new study with Professor Chi-Tang Ho and his colleagues. “However, there is a huge gap between the perception that tea consumption is healthy and the actual amount of the healthful nutrients — polyphenols — found in bottled tea beverages. Our analysis of tea beverages found that the polyphenol content is extremely low.”

Li pointed out that in addition to the low polyphenol content, bottled commercial tea contains other substances, including large amounts of sugar and the accompanying calories that health-conscious consumers may be trying to avoid. He is an analytical and natural product chemist at WellGen, Inc., a biotechnology company in North Brunswick, N.J., that discovers and develops medical foods for patients with diseases, including a proprietary black tea product that will be marketed for its anti-inflammatory benefits, which are due in part to a high polyphenol content.

Li and colleagues measured the level of polyphenols — a group of natural antioxidants linked to anti-cancer, anti-inflammatory, and anti-diabetic properties — of six brands of tea purchased from supermarkets. Half of them contained what Li characterized as “virtually no” antioxidants. The rest had small amounts of polyphenols that Li said probably would carry little health benefit, especially when considering the high sugar intake from tea beverages.

“Someone would have to drink bottle after bottle of these teas in some cases to receive health benefits,” he said. “I was surprised at the low polyphenol content. I didn’t expect it to be at such a low level.”

The six teas Li analyzed contained 81, 43, 40, 13, 4, and 3 milligrams (mg.) of polyphenols per 16-ounce bottle. One average cup of home-brewed green or black tea, which costs only a few cents, contains 50-150 mg. of polyphenols.

After water, tea is the world’s most widely consumed beverage. Tea sales in the United States have quadrupled since 1990 and now total about $7 billion annually. The major reason: Scientific evidence that the polyphenols and other antioxidants in tea may reduce the risk of cancer, heart disease, and other afflictions.

Li said that some manufacturers do list polyphenol content on the bottle label. But the amounts may be incorrect because there are no industry or government standards or guidelines for measuring and listing the polyphenolic compounds in a given product. A regular tea bag, for example, weighs about 2.2 grams and could contain as much as 175 mg. of polyphenols, Li said. But polyphenols degrade and disappear as the tea bag is steeped in hot water. The polyphenol content also may vary as manufacturers change their processes, including the quantity and quality of tea used to prepare a batch and the tea brewing time.

“Polyphenols are bitter and astringent, but to target as many consumers as they can, manufacturers want to keep the bitterness and astringency at a minimum,” Li explained. “The simplest way is to add less tea, which makes the tea polyphenol content low but tastes smoother and sweeter.”

Li used a standard laboratory technique, termed high-performance liquid chromatography (HPLC), to make what he described as the first measurements of polyphenols in bottled tea beverages. He hopes the research will encourage similar use of HPLC by manufacturers and others to provide consumers with better nutritional information.