Uomo e piante 8/dimoltialtri

Dopo un lungo periodo piuttosto congestionato che mi ha impedito di buttare giù alcunchè per il blog, provo a rintrecciare le fila del discorso sul rapporto uomo e piante. L’ultima e lontana puntata la potete ritrovare qui,  e da questa puntata potete rintracciare le altre sei già disseminate.  Mi ero fermato ad un punto cruciale, avendo tentato di dare una visione d’insieme della teoria chemioecologica dell’origine dell’uso delle piante (debitore per questo interesse ai testi di Johns e della Etkin), e essendomi lasciato da affrontare il capitolo più specifico sulla medicina “botanica” vera e propria.  Riprendo da qui, in parte riassumento quanto già detto ed in parte tentando di capire se questi ragionamenti possano illuminare la storia della medicina antica, e come.

Introduzione

Il filo che lega i primi post di questa serie alla seconda, che lega cioè i fenomeni chemioecologici adattivi tra uomo e piante allo sviluppo della medicina, è certamente sottile.  Indubbiamente l’ipotesi coevolutiva, con tutti i suoi limiti, fornisce una chiave interpretativa fertile – una buona euristica – per iniziare a rispondere alla domanda dalla quale siamo partiti: “come si giustifica la predominanza delle piante nelle farmacopee umane?”.  Essa propone che i rapporti tra uomini e piante si sono inizialmente sviluppati seguendo percorsi biologici di adattamento, simili a quelli che caratterizzano i rapporti tra piante ed altri animali, o tra piante e piante.[1]

D’altro canto, se volessimo estendere questo ragionamento all’intreccio sempre più complesso di pratiche, saperi, mediazioni simboliche ed istituzioni che caratterizzano la medicina come pratica culturale elaborata,[2] ci troveremmo di fronte ad ostacoli evidenti.  L’ipotesi coevolutiva, infatti, può “spiegare” solo in maniera limitata il sapere dell’uomo sulle piante medicinali; ci suggerisce la presenza di un legame “intrinseco” o “biologico”, ma questo legame non riesce, da solo, a dar ragione delle molteplici attività ed indicazioni terapeutiche attribuite, nel corso della storia, ai rimedi vegetali; è anzi probabile che possa giustificare direttamente solo gli utilizzi delle piante per parassitosi ed infezioni intestinali, più strettamente legati alla teoria dei tre livelli trofici.[3]

E’ invece ipotizzabile che l’interiorizzazione dei rapporti con le tossine vegetali [4] abbia costituito, per i primi gruppi umani, solo una base  sulla quale aggregare successive ulteriori  acquisizioni culturali di sapere farmacologico, aprendo la strada verso un utilizzo vieppiù complesso della chimica vegetale
Seguendo questa linea di ragionamento, si può tracciare una ideale (ed idealizzata) successione di momenti evolutivi[5].

Breve storia dei nostri primi rapporti con le piante

Le prime sperimentazioni

I primi rapporti complessi tra esseri umani e piante potrebbero avere avuto luogo come semplice interazione senza mediazioni culturali e senza riflessioni consapevoli da parte degli individui.  Un esempio potrebbe essere l’associazione mnemonica che avviene quando al consumo di una pianta succede un cambiamento immediatamente percepibile nello stato dell’organismo. Questa sorta di apprendimento automatico potrebbe avere avuto luogo solo per piante con effetti molto marcati e subitanei, come nel caso di piante velenose e/o farmacologicamente molto attive. Queste sono in effetti le protagoniste della farmacologia classica, le piante anestetiche, analgesiche, psicoattive, stimolanti, e ancora le piante cardiotoniche e diuretiche; ma anche piante con evidenti ed immediati effetti sul tratto gastrointestinale, un apparato sul quale le sostanze ingerite hanno un effetto spesso immediato e precedente all’assorbimento nella circolazione sistemica, sia per la sua caratteristica di essere un diaframma con il mondo esterno, sia per I meccanismi fortemente reattivi ad esso associati, posti a difesa della salute dell’organismo)[6].

Nei piccoli gruppi egalitari di cacciatori e raccoglitori del paleolitico,[7] precedenti alla rivoluzione agricola, e di solito costituiti da individui ben nutriti e in salute, le minacce per la salute derivavano principalmente da infezioni a lunga latenza, malattie croniche infettive della pelle e problemi parassitari, ferite e traumi derivati da incidenti familiari, di caccia e di guerra, mentre è improbabile che le infezioni acute e virulente, le diarree infettive, le epidemie, ecc., giocassero un ruolo rilevante, viste le ridotte dimensioni dei gruppi.[8] Infanticidio ed abbandono degli anziani erano probabili metodi di controllo della salute e della stabilità del gruppo.

Secondo molti storici  é probabile che l’origine delle malattie fosse sempre immaginata come esterna al corpo e con effetti non limitati all’individuo malato ma riverberati su tutto il gruppo di appartenenza. Inoltre, vista la ridotta complessità formale di queste società e la poca o assente stratificazione e specializzazione di ruoli, le attività di cura erano quasi esclusivamente intraprese all’interno della famiglia o della medicina popolare collettiva, non gestite da esperti con conoscenze esoteriche, e le terapie erano solitamente empiriche e magiche (piante ed incantesimi) o comportamentali (digiuno, reclusione, riposo).

Rapporti causa-effetto

É stato proposto che in questo contesto sociale le osservazioni empiriche e le associazioni consapevoli di tipo causa-effetto avrebbero iniziato a sovrapposi e ad arricchire il sostrato sopra descritto di risposte automatiche e di comportamenti appresi attraverso l’uso non mediato delle piante.  Questo utilizzo più consapevole delle piante è ad esempio evidente nel modo più sofisticato con il quale gli esseri umani, rispetto ad altri animali, usano le piante antelmintiche ed amebicide: eseguono infatti l’esame delle feci prima e dopo l’utilizzo per riconoscere e verificare  l’attivitá delle piante.  Uno strumento cognitivo di questo tipo potrebbe spiegare, ci dice Johns, l’utilizzo delle piante per il trattamento delle malattie più semplici (pensate e trattate in maniera naturalistica) come fratture, slogature, e soprattutto ferite ed infezioni della pelle, nel qual caso l’utilizzo di piante astringenti e antisettiche é aperto ad una verifica fattuale semplice e diretta [magari usare degli esempi]. Altri casi nei quali questa spiegazione potrebbe funzionare comprendono i disturbi della funzione sessuale, o ancora febbre, raffreddore, tosse, diarrea, mal di testa, ecc.

Malattie molto più complesse ed episodi più drammatici, che ponevano a rischio la stabilità e coesione del gruppo, erano invece al di là delle possibilità di comprensione naturalistica, per la mancanza di concetti di fisiologia e patologia, di statistica, di microbiologia. Le risposte offerte erano spesso di tipo soprannaturale, magico-religioso. D’altro canto, seppure non in grado di comprendere I meccanismi eziopatologici, gli individui potevano riconoscere gli schemi secondo I quali si organizzavano I sintomi, le ricorrenze, e le risposte dei quadri sintomatologici ai rimedi, quindi una dimensione empirica era pur sempre possibile, e poteva guidare, almeno in linea di principio,le scelte terapeutiche.  Naturalmente poteva anche succedere che le attività di certe piante, empiricamente osservabili, venissero sfruttate all’interno di un quadro esplicativo di tipo naturalistico, ma non perché agissero sulle cause della malattia o sui sintomi, ma perché rispondevano alle aspettative degli individui. Johns porta l’esempio dell’uso da parte degli Zuni di un trattamento emetico per trattare le gastralgie in genere; l’opinione di Johns è che questo utilizzo derivi dall’esperienza comune raccolta nei secoli sui disturbi di stomaco causati da intossicazioni alimentari. In questi casi, ma solo in questi, l’uso dell’emetico ha senso perché elimina le sostanze tossiche e quindi il disagio di stomaco. In caso di gastralgie derivate da altri problemi il trattamento non ha senso, ma potrebbe avere un certo effetto psicosomatico per il fatto di rispondere alle aspettative.

É comunque un fatto che in queste società il guaritore agiva sia nel campo naturalistico sia nel campo spirituale, in maniera sacra ed olistica, trattando sia l’individuo sia il gruppo. In un setting soprannaturale avrebbe agito come sciamano,[9] chiaroveggente, incantatore, divinatore e/o prete; in un setting naturalistico come specialista empirico: esperto di piante, specialista in ossa e legamenti, ostetrica, specialista in denti.

Tentativi di spiegazione più complessi

Il salto di qualità vero e proprio, che necessita di un livello di spiegazione diverso, arriva però con la nascita dei primi agglomerati urbani della rivoluzione neolitica, e con la conseguente crescente complessità delle società.  Il neolitico portò agricoltura ed allevamento, maggior sedentarietà ed aumento del cibo disponibile, e un surplus che si rese disponibile per lo scambio commerciale.  In risposta a questi cambiamenti la società si stratificò e divenne più gerarchizzata, alcuni gruppi di individui concentrarono nelle proprie mani più potere, più ricchezza e maggior capacità decisionale. Alcuni di questi si specializzarono in medicina e religione, dando inizio ad un primo contrasto tra sapere medico popolare e pubblico e sapere medico colto, arcano ed esoterico. La stratificazione favori un maggior pluralismo di forme di cura ed un maggior scetticismo rispetto alle terapie.

Contemporaneamente la popolazione umana aumentò e gli sviluppi dovuti ad allevamento, urbanizzazione e commercio elevarono il carico di malattie e favorirono le epidemie. L’agricoltura migliora infatti la quantità di calorie disponibili ma spesso, riducendo il ventaglio di nutrienti disponibili, porta ad elevata suscettibilità agli agenti patogeni.  Lo sviluppo dell’irrigazione facilitò con tutta probabilità la trasmissione dei patogeni per via orofecale, con aumento della mortalità infantile, mentre la creazione delle grandi vie commerciali favorì il trasporto di agenti patogeni a grandi distanze.[10] L’urbanizzazione più spinta portò ad un carico parassitario ed infettivo e a nuove malattie da contaminazione come tifo, malaria, ecc., mentre malattie ancora più esiziali (le esantematiche, il vaiolo, il colera, la sifilide) sarebbero arrivate solo più tardi.

Questi cambiamenti nella struttura della società e nella prevalenza delle malattie ebbe sicuramente effetti anche per la medicina. E’ probabile che le nuove malattie scardinarono e screditarono vecchi modi di gestire la salute e  vecchi rimedi, aprendo la strada a nuove concettualizzazioni, più sofisticate ed elaborate. Il maggior carico di malattie (più prevalenti, più diverse e più pervasive) creò inoltre la necessità di possedere un lessico specifico maggiore [11],mentre nuove necessità legate a problemi di fertilità spinsero alla ricerca di nuovi rimedi prima non necessari, ad azione contraccettiva, parturiente, galattagoga, emmenangoga ed abortiva.[12] L’aumento del carico di lavoro spinse probabilmente alla ricerca/offerta di tonici (fisici, psicologici, sessuali, della sorte). L’aumento di traumi e ferite causati dal lavoro agricolo e di allevamento, oltre che dalle attività di commercio e dalla guerra fece crescere le conoscenze in campo di cura delle ferite e riduzione dei traumi articolari.

Se per certe malattie, semplici e lineari nel loro decorso, è facile immaginare che l’uomo sia riuscito a scoprire dei rimedi vegetali secondo le modalità sopradescritte, ci sono patologie per le quali è improbabile se non impossibile che questo sia accaduto. Patologie complesse, dal lungo decorso rendono difficile associare un rimedio ad una riduzione dei sintomi, oppure semplicemente non rispondono ad alcun rimedio semplice. Gli esempi più classici sono le malattie cronico-degenerative, le malattie metaboliche, le neoplasie, l’invecchiamento e le patologie ad esso legate.

La fondamentale inevitabilità dei processi di senescenza e la morbidità e mortalità che questi comportano, in società dove ancora I soggetti incapaci di contribuire attivamente allo sforzo comune di sopravvivenza erano a rischio di perdita di status e ruolo sociale, contribuirono all’emergere di forti istanze esistenziali che stimolarono nuove riflessioni sui significati da dare alla morte, alla vecchiaia, a sofferenza e dolore, e alla ricerca di rimedi per lenire tali sofferenze ed angosce.

In gruppi umani più numerosi, nelle prime civiltà urbane con evidenti stratificazioni e gerarchie sociali, queste istanze  si legarono e vennero comprese all’interno di un più ampio contesto culturale, religioso e magico, che articolava il rapporto tra individuo, salute e malattia, e le strategie messe in atto per modificare questo rapporto.

In definitiva le istanze esistenziali si inserirono, ed in parte contribuirono a formare, un nascente sistema teorico e simbolico medico, adatto a capire e ad agire nel mondo, ed anche a motivare la ricerca di soluzioni terapeutiche [13], soluzioni che rivelano quindi inevitabilmente un inestricabile commistione della dimensione empirica, simbolica, rituale e magica. Questa commissione si rivela nel significato profondo assegnato alla Dottrina delle Segnature, alle caratteristiche organolettiche, morfologiche ed ecologiche delle piante medicinali.

Esempi di relazione tra sapere empirico e simbolico sono ad esempio le terapie usate nella medicina tradizionale in risposta all’”intrusione” di sostanze pericolose, spiriti maligni o “inquinamento sociale”  Queste terapie sono spesso di tipo naturalistico, indirizzate al tratto gastrointestinale e consistenti in digiuno, uso di rimedi emetici e lassativi (“eliminativi”), o amari.  Anche le piante dal sapore o dall’odore particolarmente forti (salienti dal punto di vista percettivo), sono state ritenute utili perché in grado di eliminare gli spiriti maligni responsabili della malattia; ne è testimonianza la grande importanza che ha l’utilizzo dei sensi chimici per la scelta dei rimedi in molte delle tradizioni colte, come nella medicina tradizionale cinese, nella medicina galenica,[14] nella tradizione medica indiana (Ayurveda, Unani-Tibb) e tibetana, ecc.  Qualche autore ha suggerito che il ruolo centrale che il tratto gastrointestinale ricopre nella maggior parte dei sistemi medici tradizionali[15] dia supporto alla teoria che il trattamento di parassitosi, infezioni o altri problemi gastrointestinali siano un tratto fondamentale associato alla nascita della medicina, e che si sia inestricabilmente associato ad istanze simboliche, che avrebbero “rivestito” un nocciolo empirico preesistente.

Voler vedere in una ricetta di medicina popolare, che associa l’uso di una pianta ad un rituale, esclusivamente il lato razionale, considerando spurio o comunque non rilevante il momento rituale o, d’altro canto, considerare rilevante solo questo ultimo aspetto eliminando a priori la possibilità che la pianta abbia una qualche azione, sono errori dovuti alla forzata ricerca di universali che tralascia i dettagli, che dissocia empirico e simbolico a priori.

Uso  delle piante nelle società tradizionali contemporanee: un utile parallelo

Di come si sia sviluppato l’uso delle piante medicinali nelle prime civiltà umane ci sarà tempo di parlare nei prossimi capitoli. Piuttosto, dopo questa analisi teorica rimaniamo disarmati di fronte ad un problema cruciale: la mancanza di dati oggettivi (scritti o iconografici) che possano confermare l’ipotesi fin qui descritta sulla preistoria della medicina delle piante. Questo fatto ci costringe ad usare dei parallelismi con l’utilizzo delle piante nelle società tradizionali del recente passato e contemporanee, nella speranza (e nella convinzione) che le forme di organizzazione della vita, gli usi e costumi e le pratiche mediche siano abbastanza simili a quelle delle prime comunità umane da darci un indizio su come siano andate le cose allora.

I dati etnografici indicano che le popolazioni con stile di vita ancora in transizione tra caccia-raccolta ed agricoltura, o nei primi stadi dell’agricoltura incipiente, usano solo una porzione limitata delle risorse vegetali a loro disposizione come medicine[16]. Le piante utilizzate a scopo medicinale si dispongono secondo uno schema non casuale e abbastanza stabile, sia se osservato all’interno di una cultura[17], sia se comparato tra culture geograficamente molto distanti[18, 19].  Tale somiglianza si può spiegare (secondo gli autori [19]) ipotizzando una convergenza tra filogenesi e fitochimica, tale per cui gli esseri umani scelgono piante appartenenti a gruppi tassonomici vicini perché portatori di corredi fitochimici simili e quindi probabilmente attivi sullo stesso tipo di patologie, oltre a fattori culturali e di trasmissione del sapere. I gruppi umani originali, nelle loro migrazioni per la conquista di nuovi territori, avrebbero portato con sé il proprio bagaglio di sapere medicinale, e lo avrebbero trasmesso alle nuove generazioni nei nuovi territori. Questo sapere “migrante” non consisterebbe semplicemente in una collezione di dati empirici,  ma dovrebbe essere inteso come un set dinamico di criteri di selezione delle piante, che comprende categorie morfologiche, organolettiche, ecologiche, simboliche e culturali in senso più ampio[20].

Secondo questa ipotesi la sperimentazione, la scoperta e l’acquisizione di nuovo sapere sulle piante (ad esempio la scelta di una nuova pianta per trattare un disturbo) e la percezione dell’efficacia delle piante stesse, si sarebbe costruita nei gruppi umani attraverso processi di analogia con le piante già conosciute, analogie basate sulla salienza percettiva delle piante, cioè sul sapore e sull’odore, sulle caratteristiche morfologiche,  oltre che su forme più astratte, simboliche e sociali, di categorizzazione (come ad esempio l’umoralismo, o la dottrina delle segnature).

E’ indubbio che il sapore delle piante giochi un ruolo apparentemente molto importante nella loro selezione e nella scelta della categoria nella quale farle ricadere. In uno studio su alcune popolazioni messicane tutte le piante medicinali culturalmente importanti risultarono essere aromatiche, e tutte le piante fortemente medicinali o salutari erano anche amare [21];  di converso, in altri studi, le piante esplicitamente non medicinali sono più spesso senza odore o sapore rispetto alle piante medicinali[22]. Nelle parole di un ricercatore: “le piante medicinali che sono più importanti per la comunità hanno aromi e sapori che sono rilevanti nella determinazione del loro utilizzo[23, 24] . Secondo alcuni questa rilevanza del gusto rifletterebbe un dato biologico basilare del rapporto chemioecologico piante-uomo: i sensi chimici sarebbero il ponte che unisce il nostro passato di primati foliovori al nostro presente di utilizzatori di piante medicinali, nel senso che ci permetterebbe di selezionare piante particolarmente ricche in composti attivi; e il raggrupparsi delle piante medicinali in pochi taxa sarebbe un semplice riflesso dell’abbondanza dei composti amari (o piccanti, o aromatici) in queste famiglie[25].

I processi adattivi richiamati all’inizio del capitolo riuscirebbero, secondo questa ipotesi, a costituire il sapere medicinale attraverso processi cognitivi universali[26] di esplorazione e scoperta guidati dalla percezione di gruppi fitochimici specifici; il gusto sarebbe un criterio chiave di classificazione, e la classificazione popolare delle piante non sarebbe arbitraria, bensì determinata almeno in parte dalla realtà biologica.

Questo modello di indagine e scoperta viene però criticato da chi [27] obietta che presumere l’esistenza di ruoli universali delle percezioni organolettiche nella selezione delle piante medicinali è prematuro. Secondo questi autori è difficile immaginare che una indagine empirica sul campo (un soggetto alla ricerca di piante) parta direttamente dai sapori[28], mentre è più realistico immaginare che le persone inizino ad esplorare le piante guardandosi intorno, osservando per prime le caratteristiche morfologiche; famiglie come le Asteraceae o le Lamiaceae potrebbero essere state favorite non per il contenuto fitochimico, bensì per la presenza di fiori ed infiorescenze peculiari e cospicue. Casagrande,[29] in un suo lavoro sul campo, ha riscontrato inoltre che il sapore non era, da solo, un fattore predittivo sufficiente né dell’importanza medicinale (percepita, emica) di una pianta, né del tipo di utilizzo della pianta stessa, e che quindi il sapore non sembrava giocare un ruolo importante nella trasmissione del sapere. Questa posizione si accorda bene con il modello bioculturale delle percezioni di Shepard[30], secondo il quale  le sensazioni devono essere intese come fenomeni bioculturali radicati nella fisiologia umana, ma anche costruiti attraverso le esperienze personali e la cultura. Intese in questo modo le percezioni organolettiche possono cambiare nel tempo e passando da una cultura all’altra, e con esse il legame tra sapore e uso medicinale delle piante.   Sempre secondo Casagrande é possibile che la prevalenza delle piante amare tra quelle medicinali rifletta semplicemente una sovrabbondanza di composti amari in natura[31], e la bassa specificità dei recettori per l’amaro non permetterebbe loro di riconoscere specifiche caratteristiche delle molecole, chimiche o farmacologiche [32].

Secondo questa posizione I sapori avrebbero giocato più un ruolo mnemonico che chemioecologico, e la combinazione di attributi delle piante con esperienza della malattia potrebbe spiegare l’esistenza di gruppi prototipici di piante usati per trattare gruppi specifici di malattie[33].

Questo non significherebbe, secondo Casagrande, che le piante usate dalle popolazioni nel passato e nel presente non siano efficaci, bensì che gli schemi di distribuzione del sapere non rappresentano un corrispondenza ottimale tra i bisogni basati sulle malattie e tutti i composti fitochimici disponibili[34], una conclusione raggiunta anche da Johnson in uno studio sui nativi nordamericani[35].

La correlazione storica tra certe piante e certi disturbi (ad esempio tra piante con forte salienza organolettica e disturbi del tratto gastrointestinale, una correlazione presente in tutte le culture e periodi storici) sarebbe quindi conseguente ad una categorizzazione mnemonica post-hoc (simile alla Dottrina delle Segnature[36]) ed anche ad un legame biologico euristico (perché I composti organolettici potrebbero essere indicatori di attività biologica).

——————————————————————————————

Note
[1] Inoltre contribuisce a guardare alla storia da una prospettiva eccentrica, da una visuale aliena, che non metta sempre al centro della storia umana l’uomo, ma ne riconosca le determinanti ambientali e contingenti. Come dice Hobhouse, (Hobhouse, Henry (2005) Seeds of Change. Counterpoint, Berkeley, USA, p.xiv) le piante sono una fonte inaspettata di cambiamento nella storia, spesso oscurata perché gli uomini erano troppo concentrati a guardare ai propri simili per accorgersene.
[2] Secondo Kleinmann (Kleinman, Arthur (1993) “What is specific to Western medicine?” In W.F. Bynum e Roy Porter (eds.) Companion Encyclopedia of the History of Medicine, Vol. 1 Routledge, London, UK, p.15) la medicina (intesa in senso lato, antropologico) può essere descritta come una struttura coerente di credenze sulla salute e l’istituzionalizzazione di pratiche terapeutiche. Le caratteristiche comuni a tutte le tradizioni sarebbero: la presenza di categorie attraverso le quali diagnosticare le malattie; la disponibilità di strutture narrrative che sintetizzino in problemi dei singoli individui in sindromi culturalmente significative; la possibilità di utilizzare metafore, idiomi ed altre forme simboliche centrali che portano alla costruzione di interpretazioni eziologiche della patologia così da legittimare azioni terapeutiche pratiche; l’esistenza di ruoli e carriere da guaritori; l’utilizzo di strategie retoriche che il guaritore utilizza per portare pazienti e familiari a cimentarsi con le attività terapeutiche; la disponibilità di una enorme varietà di terapie che combinano operazioni simboliche e pratiche, con l’intento di controllare I sintomi o le cause.
[3] Vedi il secondo post della serie Uomo e piante
[4] Evidente nella fisiologia umana – Vedi il sesto post della serie Uomo e piante
[5] Che si basa sulla combinazione dei dati archeologici con dati etnobotanici ed antropologici (Last, Murray “Non-western concepts of disease”. In Bynum, W.F., e Porter, Roy (1993) Companion Encyclopedia of the History of Medicine. Vol. 1 Routledge, London, UK, p. 634 ff. e bibliografia; Rothschild, H. (ed.) (1981) Biocultural Aspects of Disease, New York, Academic Press.
Johns
[6] cfr. Johns T. The origins of human diet and medicine. University of Arizona Press, 1999
[7] In mancanza di dati archeologici, la fonte più importante di inferenze sul passato sono le condizioni di vita odierne delle ultime popolazioni di cacciatori raccoglitori
[8] Vedi il quarto post della serie Uomo e piante
[9] Il fenomeno mondiale dello sciamanesimo è un modello molto antico (presente fin dal paleolitico) e particolare della figura del guaritore popolare, uno specialista del soprannaturale, del mondo invisibile dei poteri e delle forze divine dalle cui azioni distruttive la società deve essere protetta.
[10] E’ probabile che al contempo si osservasse una riduzione della mortalità adulta a causa dello sviluppo dell’immunità nei grandi gruppi urbani
[11] Logan, Dixon, 1994 op. cit
[12] l’impossibilità o l’impraticabilità dei tipici sistemi di controllo della popolazione tipici dei gruppi di cacciatori-raccoglitori a causa del ritmo troppo elevato di riproduzione nelle società agricole, insieme alla aumentata morbilità femminile a causa dell’elevato numero di parti e dell’anticipo del menarca (Logan, Dixon, 1994 op. cit)
[13] Un problema che non intendo qui pormi esplicitamente è quello di chiarire il legame e la relativa dipendenza o indipendenza delle teorie mediche da altre strutture concettuali proprie della società che le esprime. Capire cioè se le idee sulla malattia debbano essere comprese come sottosistemi del complesso ideologico dominante o se abbiano una loro indipendenza;  Cfr. Bynum e Porter 1993 op. cit.
[14] Galeno, Claudio De simplicium medicamentorum temperamentis ac facultatibus, ed. Kuhn, 11:379-892; 12:1-377
[15] Nella medicina Egiziana antica, centrale nella teoria patologica era la malattia denominata whdw, costituita da una “essenza putrefattiva” che dall’intestino passava al flusso sanguigno per arrivare ai tessuti, . Nei testi di medicina tibetana si racconta che la prima malattia sia stata l’indigestione, che venne curata con un rimedio offerto ai primi uomini da Brahma: acqua calda per indurre il vomito. L’utilizzo di emetici, purganti, espettoranti e sudorifici si ritrova nella medicina tradizionale in Africa, America, ed Europa, ed anche in contesti contemporanei (come la naturopatia).
[16] Heinrich, M, Ankli, A, Frei, B, Weimnn, C, Sticher, O (1998) “Medicinal plants in Mexico: Healers’ consensus and cultural importance”.  Soc. sci. Med. 47 (11):1859-1871; Saslis-Lagoudakis C.H., Klitgaard B.B., Forest F., Francis L., Savolainen V., Williamson E.M., Hawkins J.A. (2011) “The use of phylogeny to interpret cross-cultural patterns in plant use and guide medicinal plant discovery: An example from Pterocarpus (Leguminosae).” PLoSONE, 6(7): e22275
[17] Moerman D.E., Pemberton R.W., Kiefer D., Berlin B. (1999) “A comparative analysis of five medicinal floras.” J Ethnobiol 19(1):49-67; Pardo-de-Santayana M., Tardío J., Blanco E., Carvalho A.M., Lastra J.J., San Miguel E., et al. (2007) “Traditional knowledge of wild edible plants used in the northwest of the Iberian Peninsula (Spain and Portugal): a comparative study.” J Ethnobiol Ethnomed, 3, 27; Molares S., and Ladio A. (2009) “Chemosensory perception and medicinal plants for digestive ailments in a Mapuche community in NW Patagonia, Argentina.” J. Ethnopharmacol, 123(3), 397-406
[18] Leonti M., Ramirez F.R., Sticher O., Heinrich M. (2003) “Medicinal Flora of the Popoluca, Mexico: A botanical systematical perspective.” Econ Bot 57(2):218-230; Moerman D.E., Pemberton R.W., Kiefer D., Berlin B. (1999) “A comparative analysis of five medicinal floras.” J Ethnobiol 19(1):49-67; Treyvaud Amiguet V., Thor Arnason J., Maquin P., Cal V., Sanchez-Vindas P.,  Poveda Alvarez L (2006) “A regression analysis of Q’eqchi’ Maya medicinal plants from Souther Belize.” Econ Bot 60(1):24-38
[19] Le tre famiglie mediamente più utilizzate risultavano essere Asteraceae, Lamiaceae ed Apiaceae (Moerman D.E., Pemberton R.W., Kiefer D., Berlin B. (1999) “A comparative analysis of five medicinal floras.” J Ethnobiol 19(1):49-67;  Leonti M., Ramirez F.R., Sticher O., Heinrich M. (2003) “Medicinal Flora of the Popoluca, Mexico: A botanical systematical perspective.” Econ Bot 57(2):218-230; Treyvaud Amiguet V., Thor Arnason J., Maquin P., Cal V., Sanchez-Vindas P.,  Poveda Alvarez L (2006) “A regression analysis of Q’eqchi’ Maya medicinal plants from Souther Belize.” Econ Bot 60(1):24-38
[20] Leonti M., Ramirez F.R., Sticher O., Heinrich M. (2003) Op. cit.; Treyvaud Amiguet V., Thor Arnason J., Maquin P., Cal V., Sanchez-Vindas P.,  Poveda Alvarez L (2006) Op. cit.

[21] Heinrich, M, Ankli, A, Frei, B, Weimnn, C, Sticher, O (1998) “Medicinal plants in Mexico: Healers’ consensus and cultural importance”.  Soc. sci. Med. 47 (11):1859-1871; Leonti M., Ramirez F.R., Sticher O., Heinrich M. (2003) Op. cit.
[22] Reyes-Garcia V. (2010) “The relevance of traditional knowledge systems for ethnopharmcological research: theoretical and methodological contributions.” Journal of Ethnobiology and Ethnomedicine 6:32
[23] “Medicinal plants which are most important to the community have odors and flavors which are relevant in the determination of their use”  (Molares S., & Ladio A. (2009) “Chemosensory perception and medicinal plants for digestive ailments in a Mapuche community in NW Patagonia, Argentina.” Journal of Ethnopharmacology, 123(3), 397-406)
[24] Molares S., and Ladio A. (2009) “Chemosensory perception and medicinal plants for digestive ailments in a Mapuche community in NW Patagonia, Argentina.” J. Ethnopharmacol, 123(3), 397-406
[25] Pieroni A., Houlihan L., Ansari N., Hussain B., Aslam S. (2007) “Medicinal perceptions of vegetables traditionally consumed by South-Asian migrants living in Bradford, Northen England” J. Ethnopharmacol, 113:100-110
[26] Reyes-Garcia V. (2010) “The relevance of traditional knowledge systems for ethnopharmcological research: theoretical and methodological contributions.” Journal of Ethnobiology and Ethnomedicine 6:32
[27] Casagrande D.G. (2000) “Human taste and cognition in Tzeltal Maya medicinal plant use.” J Ecol Anthr. 4:57-69
[28] Brett propone che le persone alla ricerca di una nuova pianta medicinale inizierebbero la loro indagine selezionando piante che hanno un sapore simile a piante delle quali si sa che inducono effetti fisiologici simili a quelli che si intendono derivare dalla nuova pianta (Brett JA (1994) “Medicinal plant selection criteria among the Tzeltal Maya of Highland Chiapas, Mexico”. Ph.D diss., University of California).
[29] Casagrande D.G. (2000) Op. cit.
[30] Shepard G.H. (2004) “A sensory ecology of medicinal plant therapy in two Amazonian societies.” Am Anthr; 106:2, 252-266
[31] Akli, A, Sticher, O, and Heinrich M (1999) “Yucatec Maya medicinal plants versus nonmedicinal plants: Indigenous characterization and selection.” Human Ecology 27:557-580.  E in mancanza di studi sistematici non è ancora possibile supporre una sovrabbondanza di piante amare nelle Farmacopee rispetto alle Flore generali.
[32] D’altro canto recenti scoperte relative ai rcettori per l’amaro e per il pungente nel tratto gastrointestinale in aree extraorali sembrerebbe poter dare un razionale all’utilizzo di piante amare e pungenti in caso di disordini dell’alto tratto gastrointestinale (cfr Valussi 2011). Nonostante sia indubbio che i recettori per l’amaro non sono abbastanza selettivi per discriminare tra i differenti gruppi chimici in grado di stimolare una attivazione recettoriale, è probabile che alcune delle modificazioni fisiologiche dello stato gastrointestinale (motilità e secrezioni) secondarie all’ingestione di questi composti siano mediate dall’interazione con i recettori stessi. Vale a dire che la risposta fisiologica è al composto amaro in quanto composto che elicita una sensazione amara, a prescindere dalle sue caratteristiche chimiche. Da questo punto di vista uindi forse un ruolo per i composti organolettici può essere preservato.
[33] Casagrande D.G. (2000) Op. cit.; Pieroni A., Nebel S., Quave C., Munz H., Heinrich M. (2002) “Ethnopharmacology of liakra: traditional weedy vegetables of the Arbereshe of the Vulture area in southern Italy” J. Ethnopharmacol, 81:165-185
[34] Casagrande D.G. (2000) Op. cit.
[35] Johnson L.M. (2006) “Gitksan medicinal plants-cultural choice and efficacy.” J Ethnobiol Ethnomed 2:29
[36] Recentemente alcuni ricercatori hanno criticato l’opinione accettata che vede nella dottrina delle segnature una superstizione primitiva, proponendo che essa sia principalmente uno strumento usato per trasferire informazioni, in particolare nelle società preletterarie. Le segnature sarebbero quindi non uno strumento euristico per scoprire nuove attività in piante sconosciute, bensì attribuzioni post hoc utili a memorizzare le proprietà delle piante e quindi a disseminare l’informazione, e sono quindi utili anche al ricercatore moderno che si interroghi sulla conoscenza tradizionale. Cfr. Bennett, B.C., et al. 2007 op. cit

Uomo e piante 7/dimoltialtri

Dopo un imperdonabile iato concludo la prima tranche di elucubrazioni uomo-piantesche. Potete recuperare le puntate precedenti qui, qui, qui, qui, qui, e qui.

Per approfondimenti correlati ma tangenziali consiglio i sempre ottimi post di Meristemi (aka Erba Volant) qui, qui e qui.

Alcuni testi sono stati importanti per la scrittura di questo post, e più in generale per immaginare la serie stessa: questo, questo, questo, questo e questo.

——————————————————————————————

Riprendendo le fila del discorso, nella puntata incentrata sul rapporto chemioecologico e coevolutivo tra uomo e piante avevo citato vari autori (ma ho fatto e farò principalmente riferimento a Johns)[1] secondo i quali l’individuazione da parte dell’uomo di alcune piante “specificamente” medicinali fosse da far derivare dalla combinazione di vari fattori, quali:

  • lo sviluppo di meccanismi biologici, comportamentali e tecnologici di gestione del contatto con le piante e con i compostiin esse contenuti (fuoco, meccanismi di detossificazione);
  • la possibilità, resa concreta da tali meccanismi, di avvantaggiarsi delle proprietà tossiche delle piante in senso farmacologico;
  • l’avvento della tecnologia e dell’agricoltura che, modificando gradualmente ma drasticamente, la dieta umana, resero possibile l’assunzione di maggiori quantità di proteine (derivate da piante coltivate e carne di allevamento) e di minori quantità di piante tossiche nell’alimentazione;
  • il paradossale aumento della varietà di specie vegetali non coltivate (e del lessico ad esse associato) disponibili ed utilizzate dalle popolazioni di orticultori rispetto a quelle dei cacciatori-raccoglitori (il c.d. paradosso botanico-dietetico, vedi sotto).

Secondo Johns è grazie a questi fattori che l’uomo ha potuto nutrirsi con meno rischi (sviluppando meccanismi biologici e tecniche di detossificazione, e poi selezionando piante meno ricche in metaboliti secondari) ed ha potuto iniziare a isolare le piante più ricche in composti farmacologicamente attivi da quelle coltivate a scopo alimentare, quindi a distinguere il campo “terapeutico” da quello nutrizionale,[2] permettendo l’isolamento di una nuova categoria, addirittura di un nuovo oggetto: le piante “medicinali”.[3]

Quindi la medicina, intesa come pratica culturale che comprende l’utilizzo intenzionale di sostanze farmacologicamente attive, affonderebbe le sue radici in un dato biologico evoluzionistico (che fissa diciamo le condizioni di esistenza della medicina) ma nasce nel momento in cui diviene possibile isolare esplicitamente degli elementi (e quindi degli operatori) come terapeutici.

Sembra quindi che il passaggio all’agricoltura, a cui ho accennato in questa precedente puntata, oltre ad essere stato rivoluzionario dal punto di vista alimentare, sociale e culturale, abbia giocato un ruolo cardine anche nello sviluppo della medicina. Vorrei quindi soffermarmi in questa puntata proprio sui dettagli di questo passaggio, riprendendo ed approfondendo alcuni degli argomenti affrontati nei post sulla fitoalimurgia Chepang (qui e qui).

Le conseguenze del passaggio all’agricoltura: medicine alimentari e alimenti medicinali
Il graduale passaggio dalla caccia-raccolta all’agricoltura costituisce uno snodo cruciale che ha influenzato i successivi fenomeni di utilizzo delle piante. Ha influenzato sia le competenze dei gruppi umani rispetto alle piante medicinali, sia le loro competenze alimentari, e quindi la loro possibilità di curarsi e nutrirsi.

I dati etnobotanici si possono spesso analizzare secondo due assi; uno è quello che unisce piante alimentari e piante medicinali (l’asse piante alimentari-medicinali, o asse AM) e l’altro è quello che unisce piante selvatiche e piante coltivate (l’asse piante selvatiche-coltivate, o asse SC). I punti di contatto e di sovrapposizione tra questi assi, punti di contatto e relazioni spesso complesse e soggette a fenomeni di coevoluzione biologica e culturale, sono importanti per comprendere in che modo le competenze degli uomini siano state influenzate dal passaggio all’agricoltura.

Questo tipo di analisi è complesso. La distanza temporale che ci separa dall’oggetto di studio non permette di testare direttamente le ipotesi presentate, né di sapere direttamente quale fosse il rapporto tra le popolazioni preistoriche e il mondo vegetale. Inoltre, come è già stato sottolineato, il passaggio da un tipo di rapporto alimentare ad un altro non ha seguito una traiettoria inevitabile, lineare, unidirezionale, intenzionale: “e certamente non un allontanamento “naturale” e inevitabile” dalla caccia e raccolta.[4] Lungo l’asse raccolta-agricoltura sono state possibili tutte le permutazioni, alcune di esse ancora visibili al giorno d’oggi”: caccia e raccolta, orticoltura (coltivazioni estensive, a bassa tecnologia, con orti familiari a multicoltura), debbio, agricoltura (coltivazione intensiva, ad elevata tecnologia e a monocoltura) ed agricoltura industriale.[5]

La letteratura etnobotanica ci può aiutare offrendo all’analisi le conoscenze e le competenze che caratterizzano e distinguono il rapporto con le piante proprio dei cacciatori-raccoglitori da quello degli agricoltori[6]; ci offre quindi uno strumento essenziale per avanzare delle ipotesi su come sia cambiato il rapporto con il mondo vegetale durante il neolitico, su come le conoscenze e le competenze rispetto alle piante siano cresciute e cambiate, e su come tutto questo abbia a che fare con la nascita della medicina.

Per meglio valutare il significato dei dati etnobotanici è però necessario soffermarsi sulla terminologia che utilizzeremo, e sui problemi che derivano dalla necessità di semplificare la complessità. Negli studi quantitativi in antropologia è necessario, infatti, utilizzare categorie specifiche, appunto per permettere uno studio analitico. Questa necessità si scontra però con problemi definitori e di demarcazione, in particolare su due assi, quello del continuum tra piante alimentari e piante medicinali (asse AM), e quello del continuum tra piante selvatiche e piante coltivate (asse SC).[7]

L’asse AM

Anche se è sempre possibile identificare degli esemplari delle due categorie che non lasciano spazio all’ambiguità (ad esempio grano come alimento e Atropa belladonna come medicina), i confini tra piante alimentari e medicinali non sono sempre così netti. Alcuni autori sostengono, infatti, che questa distinzione è in realtà largamente assente nelle popolazioni indigene o è comunque fortemente dipendente dal contesto.

E’ necessario quindi introdurre nuove definizioni che descrivano senza semplificare eccessivamente il continuum alimentare-medicinale. Pieroni e Quave propongono tre categorie:[8]

  1. Piante usate sia come medicine sia come cibo, ma senza alcuna correlazione tra i due usi.
  2. Piante che a parte gli scopi alimentari o edonistici hanno anche altri effetti sul corpo (depurativi, alterativi, tonici del sangue, antiossidanti, ecc.): definiti come cibi funzionali.
  3. Piante che vengono consumate chiaramente come alimento ma per ottenere effetti specificamente terapeutici: definiti come cibi medicinali o medicine alimentari.

L’asse SC.

Altrettanto complessa è la categorizzazione delle piante in base al loro rapporto con l’uomo in termini di gestione. Anche in questo caso i poli estremi sono facilmente identificabili (piante selvatiche e piante addomesticate e coltivate) ma il territorio intermedio presenta molte sfumature e sovrapposizioni. Ad esempio, ci dice la Price, le piante eduli semi-selvatiche, o selvatiche ma gestite e non addomesticate, sono una caratteristica primaria dei sistemi agricoli. Allo stesso tempo sono differenti dalle piante selvatiche dei cacciatori-raccoglitori, perché provengono molto spesso da aree di successione, ruderali, bordi stradali, ecc., piuttosto che dalla foresta.

Vari autori propongono un elenco di categorie basato sulle differenti pratiche agricole e sulla selezione che operano sulle piante:[9]

  1. Piante addomesticate: geneticamente modificate e completamente dipendenti dall’uomo.
  2. Piante semiaddomesticate: parzialmente modificate e non compeltamente dipendenti dall’uomo.
  3. Piante coltivate: introdotte in sistemi agronomici e mantenute in letti di coltivazione.
  4. Piantegestite: protette grazie all’attività umana e aiutate nella competizione con le altre piante.
  5. Piante selvatiche in senso stretto: usate ma non coltivate né gestite.

Nota Bene: le piante di cui ai punti 2, 4 e 5 possono essere definite come piante selvatiche in senso lato.

Per portare un esempio calato nella realtà, Hanazaki e collaboratori, in uno studio sulle piante alimentari e medicinali in Amazzonia, distinguono 4 tipi di rapporto con le piante:[10]

  1. Piante con nessuna o ridotta gestione umana, tutte native, raccolte nella foresta, e che costituiscono il 26% delle piante totali utilizzate.
  2. Piante facilitate dalla gestione umana, native all’80%, raccolte in molti ambienti diversi, nella foresta, nelle coltivazioni a debbio, nelle zone ruderali e nelle vicinanze delle case. Costituiscono il 12% delle piante totali utilizzate.
  3. Piante coltivate ma raramente, native solo al 20%, raccolte in molti ambienti diversi ma non nella foresta: coltivazioni a debbio, nelle zone ruderali, nelle vicinanze delle case e negli orti. Costituiscono la maggior parte (56%) delle piante utilizzate.
  4. Piante coltivate. Native solo al 20%, raccolte nelle zone di coltivazione a debbio. Costituiscono solo il 6% delle piante totali utilizzate.[11]

La formazione del sapere relativo alle piante nel passaggio all’agricoltura

Logan e Dixon, cercando di dare risposta a questa domanda, propongono che le popolazioni indigene di cacciatori-agricoltori utilizzino una percentuale limitata dei taxa disponibili, scelta tramite un processo non casuale di selezione basato su caratteristiche poco usuali che permettono di distinguere facilmente alcune piante da altre. Operando questa forte selezione, tralasciando moltissime piante e concentrandosi solo su poche specie “interessanti”, da investigare, l’uomo “trasforma un problema intrattabile in un dominio di indagine gestibile”.[12]

Nancy Turner identifica alcune caratteristiche che definiscono la “salienza percettiva”, l’ ”ovvietà”, delle piante “interessanti”:[13]

  • Essere ubiquitarie
  • Morfologia, colori, aromi, sapori rari o facilmente individuabili
  • La capacità di causare forti reazioni (ad esempio dermatite da contatto)
  • L’essere libere da infestazioni
  • Il fatto che altri animali se ne cibino,
  • Il possedere caratteristiche antropomorfe

Una volta individuate, queste caratteristiche servono come strumenti euristici per categorizzare altre piante, all’interno di una tassonomia locale trasversale alla tassonomia scientifica. Ad esempio, le piante allucinogene del genere Datura [Solanaceae] sono amare, piccanti e nauseanti, e queste caratteristiche sono state utilizzate dalle popolazioni indigene per predire proprietà allucinogene in altre specie che possedevano le stesse caratteristiche.

Le conoscenze e le tassonomie popolari sono molto più sensibili al contesto e meno generalizzabili delle tassonomie scientifiche, per cui è del tutto probabile che questi processi di acquisizione del sapere e di generalizzazione abbiano portato ad incidenti (intossicazioni o avvelenamenti), ad esempio quando spostandosi da aree conosciute a nuovi territori, con nicchie ecologiche diverse, i raccoglitori utilizzano piante che paiono sovrapponibili a quelle conosciute ma ne differiscono, a volte con risvolti tossici.[14]

Un’occhiata ai dati

Louis Grivetti, uno degli autori che più hanno contribuito a definire il campo della ricerca tra cibo e medicina, riporta i risultati di uno studio effettuato nel 1973 in Botswana, nel deserto del Kalahari, tra i popoli Tswana, ed in particolare con i baTlokwa.[15]

I baTlokwa sono coltivatori con una vasta conoscenza delle piante selvatiche commestibili (Grivetti registra più di duecento specie conosciute),[16] che servono a sostenere l’alimentazione della popolazione in tempi di scarsità, quando le cultivar alimentari tipiche scompaiono per la siccità o per una stagione particolarmente povera.

Alcune di queste piante sono semplici cibi spontanei, altre sono dei cibi-medicina, altre ancora sono delle piante consumate come cibo solo in situazioni di emergenza alimentare, i cosiddetti cibi da carestia (ad esempio i frutti ed I semi di “magabalka” [Cucumis myriocarpus Naudin — Cucurbitaceae], solitamente usati come foraggio, o le foglie di “moologa” [Croton gratissimus Burch. — Euphorbiaceae], normalmente usata come pianta magica, o la radice di “motlopi” [Boscia albitrunca (Burch.) Gilg & Benedict Capparaceae o Brassicaceae], usata al posto del sorgo [Sorghum arundinaceum (Desv.) Stapf — Graminae].

Che le piante selvatiche svolgano un ruolo importante per il sostentamento della popolazione è sottolineato, secondo l’autore, dal diverso destino delle popolazioni del Kalahari orientale e del Sahel:

“(p)er più di cento anni i baTlokwa del deserto del Kalahari orientale, nel Botswana, non hanno sofferto di carestie o di ripercussioni a livello sociale a causa della siccità. Tale successo alimentare in quest’area è dovuto all’equilibrio tra offerta ambientale e decisioni culturali. Il Kalahari orientale offriva una elevata diversità di piante selvatiche eduli, ed i baTlokwa utilizzavano regolarmente tali risorse. Il messaggio più importante che emerse dopo due anni di lavoro sul campo fu che la siccità non aveva causato carestie, e che una spiegazione per il disastro del Sahel [ovvero la tremenda carestia che colpì la regione del Sahel a seguito di una lunga siccità, proprio negli anni della ricerca nel Kalahari. NdT] era l’incapacità culturale a riconoscere ed utilizzare le risorse alimentari selvatiche disponibili — cibi che in precedenza erano stati utilizzati come sostentamento durante le siccità“.[17]

In una ricerca basata nello Swaziland gli autori notano che il 40% degli informatori usa il 50% e più di piante selvatiche per l’alimentazione, raccolte nei campi coltivati o gestite negli orti casalinghi. Gli autori scoprono altresì che i bambini mostrano maggiori competenze rispetto agli anziani, al contrario di ciò che Grivetti aveva notato nel Kalahari, e propongono che ciò sia dovuto al fatto che I bambini devono attraversare varie zone ecologiche diverse per andare a scuola, e sono quindi esposti ad una maggior diversità vegetale.[18] In Nigeria, tra gli Hausa, il 93% della popolazione gestisce e protegge le piante infestanti, ed il 50% del cibo vegetale viene raccolto nel selvatico (nello specifico 39 specie raccolte negli orti familiari, 6 specie raccolte lungo i bordi dei campi e dei sentieri, e 16 specie raccolte nei terreni a gestione comunitaria).[19] Nel Burkina Faso Smith e collaboratori riportano che il 36% dei vegetali consumati nei villaggi (ed il 20% di tutti gli alimenti) sono selvatici.[20] Vainio-Mattila osserva che tra i Sambara in Tanzania i vegetali consumati includono 73 specie di piante selvatiche, ruderali o infestanti.[21]

In Kazakistan il 25% delle famiglie raccoglie piante selvatiche (bacche, bulbi, frutta, piante medicinali e funghi).[22]

Secondo la Price in Tailandia, nei terreni coltivati a riso (ed intorno ad essi), si riconoscono e raccolgono 77 specie di piante selvatiche.[23] Inoltre quasi il 90% delle famiglie gestisce piante non domesticate negli orti familiari.

La raccolta delle piante è demandata quasi totalmente alle donne, per le quali questa attività è secondaria ad altre. Dato infatti che le donne svolgono molte attività legate alla casa, alla famiglia, al gruppo sociale, e sono per questa ragione costrette a muoversi sul territorio e a trapassare molti confini ecologici, esse entrano in contatto con molte specie diverse di piante (in maniera simile a quanto visto per i bambini nello Swaziland) che vengono raccolte “sulla via per” fare qualcosa d’altro.[24]

Nel Nepal centrale, nella comunità Chepang della zona di Shaktikhor, sul massiccio del Mahabarath, la maggior parte dei nuclei familiari (ca. il 90%) usa le risorse forestali o non coltivate a scopo medicinale, per venderle al mercato, o per sopperire ad una vera e propria mancanza di cibo (il 75% dei nuclei familiari), e gestisce in qualche modo le piante selvatiche, sia attraverso una protezione in situ, sia attraverso processi preagricoli di domesticazione. Tutte le famiglie stoccano, oltre ai cereali coltivati, piante selvatiche, in particolare Githa (Dioscorea bulbifera L. — Dioscoreaceae) e Bhyakur (Dioscorea deltoidea Wall. ex Griseb.) e in minor misura dei germogli di bambù (Bambusa nepalensis Stapleton – Poaceae).

In generale le donne Chepang sono leggermente più competenti degli uomini rispetto alle piante selvatiche, ma la differenza non è molto significativa. E’ possibile che le ridotte competenze agricole dei Chepang possano in parte spiegare questa uniformità tra uomini e donne: non avendo sviluppato molto la coltivazione degli orti familiari, forse è venuta a mancare alle donne Chepang la possibilità di aumentare le loro competenze sulle piante degli ambienti di transizione.[25]

In uno studio sulla zona amazzonica Hanazaka e collaboratori sottolineano come la foresta contribuisca solo al 28% per le specie selvatiche consumate, mentre le zone ruderali e I terreni intorno alle case contribuiscono per il 52%, e gli orti e le coltivazioni a debbio per il 20%.[26] In maniera simile Dufour e Wilson notano che il 41% delle piante eduli amazzoniche sono alberi, di cui il 50% proviene dalla coltivazione a debbio.[27] Emerge quindi l’importanza delle zone a vegetazione successionale, a crescita secondaria.[28]

A Cuba su circa 260 specie di piante medicinali e alimentari, solo 25 sono delle cultigen. Tra le non-cultigen, 82 (di cui 39 cibi-medicina) provengono da raccolta in area agricola, 36 (di cui 6 cibi-medicina) dai bordi dei campi, e 56 (di cui 16 cibi-medicina) dalle terre a gestione comunitarie.[29] La ricerca di Vandebroek e Sanca sulle Ande boliviane ha riscontrato che il 58% delle specie medicinali-alimentari è selvatica, e che le famiglie con la miglior sovapposizione tra uso medicinale ed alimentare sono Lamiaceae, Fabaceae, Asteraceae, e Solanaceae.[30]

Nello studio di Ana Ladio sull’utilizzo delle piante selvatiche in una comunità Mapuche della Patagonia nordoccidentale si evidenzia che:

  • Le piante medicinali-alimentari sono raccolte più vicino agli insediamenti
  • Viene dedicato meno tempo alla raccolta delle piante medicinali-alimentari rispetto a quelle alimentari
  • Vengono raccolte quantità minori di piante medicinali-alimentari rispetto a quelle alimentari.[31]

La stessa autrice nota una buona sovrapposizione tra piante alimentari e piante medicinali, e delle chiare differenze chemiotassonomiche tra piante medicinali-alimentari (evolutivamente più recenti) e piante esclusivamente alimentari (evolutivamente più antiche).[32]

Proprio quest’ultimo dato pare particolarmente interessante. Ritornando a quanto accennato nel capitolo sull’evoluzione dei sistemi di difesa chimici delle piante, il rapporto tra la percentuale di piante medicinali presenti in una famiglia botanica ed il livello evolutivo della famiglia stessa sembra coerente con quanto sappiamo sull’evoluzione.

Prendendo per buona questa ipotesi, il riconoscimento da parte dell’uomo di questo trend dovrebbe avere un effetto sull’evoluzione antropogenica, nel senso che la selezione da parte delle popolazioni umane delle piante “utili” tenderebbe a far risaltare maggiormente questa distinzione.

Ad esempio: “nella discussione sull’addomesticamento è di fondamentale importanza includere (nell’analisi NdT) piante con potenziale farmacologico (e non solo quelle a contenuto calorico NdT) in modo da comprendere realmente il continuum delle relazioni uomo-pianta”.[33] Nel calcolo costi/benefici della raccolta piuttosto che della coltivazione è riduttivo quindi utilizzare nell’equazione solo importi calorici senza tenere presente fattori extranutrizionali. E’ probabile che le scelte effettuate dai raccoglitori dipenderenno dalla massimizzazione delle calorie e dalla minimizzazione delle spese energetiche, ma anche dalla necessità di minimizzare gli antinutrienti e di massimizzare gli xenobiotici vantaggiosi.

Questa riflessione dovrebbe ricordarci che i processi di addomesticazione sono di natura evolutiva e mostrano molti stadi e condizioni intermedie lungo un gradiente, lungo il quale “ gli esseri umani alterano la struttura genetica delle popolazioni di piante utili, modificano la loro distribuzione ed abbondanza attraverso la gestione non agricola.[34] Questo significa che le popolazioni non modificano solo il paesaggio tramite la coltivazione ma modificano anche l’ambiente dove vivono e vengono raccote le piante spontanee gestite con modalità ‘preagricole’. In ogni momento dato l’interazione uomo-pianta è il risultato di un graduale processo di aumento dell’intensità della gestione delle piante e dell’ambiente”.[35]

Il paradosso botanico-dietetico

Nonostante comunemente si ritenga che la foresta contenga un tesoro nascosto di piante medicinali, è probabile che la maggior parte di quelle usate dai cacciatori-raccoglitori venga (ora come un tempo) dalla prateria e dai bordi forestali, e che siano le piante infestanti o ruderali a giocare il ruolo più importante.

A questa conclusione arrivano molti autori sia dopo una analisi approfondita dei testi di etnobotanica che riportano la provenienza delle piante medicinali.[36] Sia a seguito di pubblicazioni specifiche sul rapporto tra piante medicinali e infestanti. Hanazaki e collaboratori hanno ad esempio evidenziato nel loro studio sull’utilizzo delle piante alimentari e medicinali in Amazzonia, come la foresta contribuisca al 28% delle specie utilizzate, le zone ruderali e i dintorni delle case al 52%, gli orti e le coltivazioni a debbio al 20%.[37] In un altro articolo sulle piante medicinali utilizzate dai nativi americani gli autori mostrano come esista una forte preferenza per le piante infestanti: in Nord America, le infestanti rappresentano solo il 9.6% della flora, ma il 26% della flora medicinale, e in Chiapas le infestanti sono il 13% della flora ed il 34% della flora medicinale.[38]
Sette delle dodici famiglie di invasive più importanti sono famiglie molto importanti come medicinali: Asteraceae, Fabaceae, Convolvulaceae, Euphorbiaceae, Chenopodiaceae, Malvacae, e Solanaceae.[39]

Una analisi del lessico relativo al mondo vegetale rivela inoltre che spesso le società orticulturali hanno una folk taxonomy e un ventaglio di termini (su piante medicinali e malattie) in media più ricco dei cacciatori raccoglitori puri.[40] Sembrerebbe quindi, dice la Price, che l’allontanarsi dalla dipendenza totale dalla foresta come fonte di cibo comporti un aumento, e non una diminuzione, della diversità di piante consumate, che l’avvento dell’agricoltura abbia comportato certamente una perdita in biodiversità selvatica (tanto maggiore quanto più intensa/iva l’agricoltura), ma che paradossalmente in certi casi abbia aumentato la biodiversità alimentare, delle piante da carestia e delle piante cibo-medicina.[41]

Le ragioni di questo paradosso sono varie, ed includono:

1. Gli ambienti agricoli ed orticulturali hanno biodiversità comparabile o più elevata a quella della foresta.[42] L’impatto degli insediamenti umani e dell’agricoltura sul territorio avrebbe creato zone periagricole, zone di confine tra foresta e coltivazioni, e ambienti disturbati dall’attività umana, come campi, bordi, sentieri, ecc. che offrono un habitat importante per molte specie colonizzatrici, infestanti e ruderali. Questo processo avrebbe aumentato il numero di specie presenti e facilmente osservabili. Alcune di queste piante vennero addomesticate o rimasero comunque all’interno del continuum tra piante alimentari e medicinali, rivestendo ora un ruolo ora l’altro a seconda delle condizioni contingenti, andando ad arricchire il lessico delle popolazioni locali. Come ha rilevato la Price spesso la maggior diversità di piante utilizzate dipende dal fatto che le donne, per il ruolo da esse svolto nelle società tradizionali, si occupano della casa e del giardino e quindi sono in diretto contatto con tutte le aree transizionali tra foresta e coltivazioni.[43]

2. Le infestanti sono nella maggior parte dei casi piante a rapida crescita, opportunistiche, colonizzano rapidamente un’area e rapidamente muoiono. Per questa ragione esse si basano per la loro difesa sulla produzione di composti chimici qualitativi (metaboliti molto attivi e tossici come alcaloidi, terpeni, glicosidi cardiaci, ecc.) piuttosto che composti quantitativi (tannini e lignine, antinutrizionali ma non tossici), più tipici nelle piante perenni non successionali (piante da climax).[44]

3. La dieta agricola si era fortemente semplificata, passando dalle decine di piante usate come alimento dai cacciatori-raccoglitori a solo due-tre piante (a volte addirittura solo una, come nel caso del mais [Zea mays L. — Graminae] in Mesoamerica) alla base dell’alimentazione degli agricoltori.[45] Questa semplificazione portò probabilmente al desiderio di usare le piante aromatiche e resinose nella preparazione degli alimenti, per diversificare I sapori, e questo a sua volta portò ad una maggior complessità del lessico legato a sapori ed odori.

4. La conoscenza delle piante spontanee, da carestia, ecc. Funzionava da meccanismo di sicurezza in caso le coltivazioni non riuscissero a sostenere la popolazione.[46]

Conclusioni

Che conclusioni si possono trarre dai dati appena esposti?
Il concetto che la nascita dell’agricoltura e la natura ambigua delle infestanti (al limine tra alimenti o medicine) abbiano influenzato il crescere della conoscenza sulle piante sembra supportato dai dati, e permette ad alcuni autori di formulare nuove ipotesi sulla nascita di questa conoscenza, differenti da quelle unilineari che fanno dipendere la “scoperta” delle piante medicinali dal loro utilizzo come cibo. Etkin e Ross propongono ad esempio, sulla base del loro studio sulla dieta degli Hausa in Nigeria, che le piante possano essere prima identificate come portatrici di “salienza percettiva”, vengano quindi manipolate ed entrino nel continuum tra spontaneo e coltivato, vengano usate come medicine e successivamente, sotto la pressione delle emergenze, diventino anche “cibi selvatici” o “da carestia”; successive manipolazioni possono poi spostare le specie più adatte verso la domesticazione ed il passaggio a pianta decisamene alimentare.[47]

Da questa prospettiva risulta allora più chiaro il perché, ad esempio, la maggior parte delle piante con azione sulla fertilità e riproduzione umane in varie parti del mondo siano delle piante invasive, coltivate o addomesticate, ed anche perché siano spesso usate come spezie: peperoncino, menta spicata, cipolla, aglio, chiodi di garofano, noce moscata, cumino, pepe, avocado, ananas, papaia, puleggio, sesamo, agrumi.[48]

Certamente che non è possibile tracciare dei percorsi lineari nel rapporto uomo-piante. Percorrendo lo spettro tra caccia e raccolta ed agricoltura spinta, ciò che colpisce è che seppure la dieta e le competenze naturali degli agricoltori intensivi siano certamente di inferiore qualità rispetto a quella dei cacciatori-raccoglitori, in alcuni degli stadi di passaggio tra i due poli le competenze sono aumentate, e non diminuite, e probabilmente anche la dieta, fino a quando le piante selvatiche ricche in composti farmacologicamente attivi sono rimaste parte integrante della dieta, seppure iniziando a distinguersi dalle piante esclusivamente alimentari.

L’ipotesi di Johns sulla nascita della medicina grazie alla possibilità di scindere le piante alimentari da quelle medicinali sembra plausibile, ma una divisione assoluta dei due campi, anche materialmente, si avvera solo con l’agricoltura intensiva dell’epoca contemporanea, e coincide con una perdita in qualità dell’alimentazione. Nella estremizzazione dello spettro (piante solo alimentari, solo caloriche, strippate di ogni contenuto allelochimico, e farmaci estremamente attivi, monomolecolari, estremamente potenti) si sono perse (si stanno perdendo) le competenze rispetto a quel mondo ambiguo e variegato nel quale possiamo ingerire alimentandosi sostanze farmacologicamente attive. Ma durante il processo che ci ha portato qui l’uomo ha imparato a distinguere I due campi pur continuando ad utilizzare piante-medicina nell’alimentazione.


Note

[1] Johns T (1990) The Origins of Human Diet and Medicine. University of Arizona Press

[2] Distinzione che però si esplicita solo nell’era moderna, se è vero che per tutta l’antichità classica ed il medioevo i due campi sono ancora molto sovrapposti

[3] Johns 1990 op. cit.

[4] Sarebbe ad esempio scorretto pensare ai cacciatori-raccoglitori come a dei meri sfruttatori del territorio nel quale raccolgono il cibo; anche essi, come gli agricoltori, lo gestiscono, seppure in maniera differente. (Logan M.H., Dixon A.R. “Agricolture and the acquisition of medicinal plants knowledge”. In N.L., Etkin (ed.) (1994) Eating on the wild side: The pharmacologica, ecological, and social implications of using noncultigens pp. 25-45; Moerman D.M. “North american food and drug plants”. In N.L., Etkin (Ed.), 1994 op. cit. pp. 166-184; Diamond, Jared (1997) Guns, Germs, and Steel: the fates of human societies. W.W. Norton & Co. Ed italiana Armi, acciaio e malattie: breve storia del mondo negli ultimi tredicimila anni. Torino, Einaudi 2000).  I Siona-Secoya del bacino del Rio delle Amazzoni, ad esempio, derivano il loro cibo principalmente da piante coltivate (in giardini che ricavano nell’intorno della foresta e vicino ai villaggi), da caccia e pesca, ma consumano frequentemente anche i frutti di piante spontanee (in realtà meglio descritte come “antropofite” o invasive) come le palme Ita [Mauritia flexuosa L.f.] e Tucuma [Astrocaryum tucuma C. Martius], il Tacay [Caryodendron orinocense Karsten — Euphorbiaceae], le Inga spp. [Fabaceae], lo Zapote [Quararibea spp. — Bombacaceae], Pseudolmedia laevis [Moraceae], Physalis angulata [Solanaceae] e Phytolacca rivinoides [Phytolaccaceae]. (Vickers WT (1994) “The health significance of wild plants for the Siona and Secoya”. In NL Etkin (1994) pp. 143-165)

[5] Etkin, NL (2006) Edible medicines: An ethnopharmacology of food. Arizona University Press

[6] La separazione tra i due campi non è netta, sono cioè esistiti cacciatori-raccoglitori sedentari, agricoltori non sedentari. E’ probabile che la percentuale di cacciatori-raccoglitori sedentari fosse molto più elevata 15.000 anni fa (quando tutti erano cacciatori-raccoglitori.) che in tempi moderni, perché le risorse erano maggiori

[7] Hanazaki N, Peroni N, Begossi A (2006) “Edible and healing plants in the ethnobotany of native inhabitants of the Amazon and Atlantic forest area of Brazil”. In A. Pieroni, LL Price (eds.) Eating and Healing: Traditional food as medicine. Food Products Press, New York

[8] Pieroni, A. e Quave, C. “Functional foods or food medicines? On the consumption of wild plants among Albanians and Southern Italians in Lucania” in A., Pieroni e L., Leimar Price (eds.)  (2006) Eating and Healing, Haworth Press,  p. 110

[9] Price LL (2006) “Wild food plants in farming environment”s. In A. Pieroni, LL Price (eds.) Eating and Healing: Traditional food as medicine. Food Products Press, New York.; Johns T (1994) Ambivalence to the palatability factors in wild foods plants. In NL Etkin (ed.) Eating on the wild side: The pharmacological, ecological, and social implications of using noncultigens. Arizona University Press, pp. 46-61e Huss-Ashmore e Johnson 1994 “Wild plants as cultural adaptations to food stres” in NL Etkin (1994) op. cit. pp.

[10] Hanazaki et al. (2006) op. cit.

[11] Si nota quindi che le piante non gestite sono tutte native e coincidono quasi perfettamente con le piante della foresta, mentre le piante coltivate sono per la maggior parte introdotte e si trovano esclusivamente nelle zone ad addebbio

[12] Logan, Dixon, 1994 op. cit.

[13] Turner N.J., (1988) “The importance of a rose: Evaluating the cultural significance of plants” American Anthropology 90:272-290

[14] Grivetti LE (2006) “Edible wild plants as food and as medicine: Reflections on thirty years of field works” in A. Pieroni, LL Price (eds.) Eating and Healing: Traditional food as medicine. Food Products Press, New York

[15] Grivetti LE (2006) “Edible wild plants as food and as medicine: Reflections on thirty years of field works” in A. Pieroni, LL Price (eds.) Eating and Healing: Traditional food as medicine. Food Products Press, New York

[16] L’autore nota anche una perdita di competenze da parte dei giovani a causa di un ridotto trasferimento verticale delle conoscenze tradizionali, un dato riportato da moti altri autori

[17] Grivetti LE (2006) “Edible wild plants as food and as medicine: Reflections on thirty years of field works” in A. Pieroni, LL Price (eds.) (2006) Eating and Healing: Traditional food as medicine. Food Products Press, New York. Questa indagine stimola in Grivetti alcune domande centrali rispetto al ruolo delle piante selvatiche in società in transizione tra caccia-raccolta e agricoltura: le piante selvatiche eduli erano centrali o secondarie rispetto al mantenimento della qualità dell’alimentazione? Esse duplicavano o complementavano l’energia ed i nutrienti derivanti dalle piante coltivate? E’ lo stesso autore a proporre che le competenze sulle piante selvatiche abbiano rappresentato per i baTlokwa una risorsa di duttilità ed adattabilità alimentare che ha aumentato la capacità di rispondere alle emergenze e la variabilità alimentare

[18] Ogle BM e Grivetti LE (1985) “Legacy of the chamaleon. Edible wild plants in the kingdom of Swaziland, southern Africa. A cultural, ecological, nutritional study. Part 1: Introduction, objectives, methods, Swazi culture, landscape, and diet”. Ecology of Food and Nutrition 17:1-30

[19] Etkin NL, e Ross PJ (1994) “Pharmacological implications of “wild” plants in Hausa diet”. In NL Etkin (ed.) 1994 op. cit. ; Humphry C, Clegg MS, Keen C, e Grivetti LE (1993) “Food diversity and drought survival. The Hausa example”. International Journal of Food Sciences and Nutrition 44:1-16

[20] Le piante più comuni sono il baobab [Adansonia digitata L. — Bombaceae], la marula [Sclerocarya birrea (A. Rich.) Hochst. — Anacardiaceae] e il tamarindo [Tamarindus indica L. — Leguminosae]. La raccolta viene effettuata soprattutto (81%) da donne e ragazze per uso familiare, mentre gli uomini raccolgono piante solo per uso personale. cfr. Smith GC, Clegg MS, Keen CL e Grivetti LE (1995) “Mineral values of selected plant foods common to southern Burkina faso and to Niamey, Niger, West Africa”. International Journal of Food Sciences and Nutrition 47:41-43; Smith GC, Duecker SR, Clifford AJ, e Grivetti LE (1996) “Carotenoid values of selected plant foods common to southern Burkina Faso, West Africa”. Ecology of Food and Nutrition 35:43-58

[21] Vainio-Mattila K (2000) “Wild vegetables used by the Sambara in the Usambara Mountains, NE Tanzania”. Annales Botanici Fennici 37:57-67

[22] Dalsin MF, Laca EA, Abuova G, e Grivetti LE (2006) “Livestock-owning households of Kazakstan. Part 1: Food systems”. Ecology of Food and Nutrition 41:301-343

[23] Price LL (2006) op. cit.

[24] Ogle BM e Grivetti LE (1985) op. cit.

[25] Rijal, Arun. (2008) “A Quantitative Assessment of Indigenous Plant Uses Among Two Chepang Communities in the Central Mid-hills of Nepal.” Methods 6: 395-404

[26] Hanazaki, Peroni, Begossi (2006) op. cit.

[27] Dufour DL e Wilson WM (1994) “Characteristics of “wild” plant foods used by indigenous populations in Amazonia”. In NL Etkin (ed.) 1994 op. cit.

[28] Vickers 1994 op. cit.

[29] Volpato G, Godìnez D (2006) “Medicinal foods in Cuba: Promoting health in the household”, in A. Pieroni, LL Price (eds.) Eating and Healing: Traditional food as medicine. Food Products Press, New York

[30] Vandebroek I e Sanca S (2006) Food medicines in the Bolivian Andes (Apillapampa, Cochabamba Department) in A. Pieroni, LL Price (eds.) op. cit.

[31] Secondo l’autrice questa differenza è spiegata dalla teoria del rapporto tra contenuto calorico della pianta ed energia spesa per ottenerla, ma la teoria non tiene conto delle possibili variabili extranutrizionali

[32] L’autrice riporta che tra le piante alimentari e medicinali (che comprendono il 63% di tutte le specie selvatiche) le famiglie botaniche più rappresentate sono le Apiaceae (con 4 specie), le Asteraceae e le Oxalidaceae (2 specie), e le Lamiacese e Caryophylaceae. Lo schema è diverso per le piante eduli: le famiglie più rappresentate sono: Araucariaceae, Berberidaceae, Rosaceae, Celastraceae, Myrtaceae, e Saxifragaceae. cfr. Ladio AH (2006) “Gathering of wild plant foods with medicinal use in a Mapuche community of Northwest Patagonia” in A. Pieroni, LL Price (eds.) op. cit.

[33] Hanazaki, Peroni, Begossi (2006) op. cit.

[34] Harlan JR (1995) The living fields. Our agricoltural heritage. Cambridge, Cambridge University Press

[35] Hanazaki, Peroni, Begossi (2006) op. cit.

[36] Alcorn, J.B. Huastec Maya ethnobotany. University of Texas Press, Austin, Texas, 1984, pp. 311–312.; Arvigo, R., Balick, M. Rainforest Remedies: 100 Healing Herbs of Belize. Lotus Press, Twin Lakes, Wisconsin, 1993; Caniago, I. & Siebert, S.F. (1998) “Medicinal plant ecology, knowledge and conservation in Kalimantan, Indonesia”. Econ. Botany 52:229–250; Frei, B., Sticher, O. & Heinrich, M. (2000) “Zapotec and Mixe use of tropical habitats for securing medicinal plants in Mexico”. Econ. Botany 54:73–81; Posey, D.A. “A preliminary report on diversified management of tropical forest by the Kayapó Indians of the Brazilian Amazon”. In: Prance, G.T., Kallunki, J.A. (Ed.), Ethnobotany in the Neotropics. New York Botanical Garden, New York, 1984, pp. 112–126

[37] Hanazaki, Peroni, Begossi (2006) op. cit.

[38] Stepp J. R., F.S. Wyndham e R.K. Zarger (eds.) Ethnobiology and biocultural diversity.  Proceedings of the Seventh International Congress of Ethnobiology, University of Georgia Press, 2002; Moerman, D.E. (2001) “The importance of weeds in ethnopharmacology” Journal of Ethnopharmacology, 1(75): 19-23

[39] Holm L. (1978) “Some characteristics of weed problems in two worlds”. Proc. West. Soc. Weed Sci. 31:3–12

[40] Meilleur BA (1994) “In search of ‘keystone societies’ ”. In NL Etkin (1994) op. cit.

[41] Price LL (2006) op. cit. A movement away from dependance on plants from forest as food and medicine appears to be accompanied by an increase in comnsumption of plant foods and medicines gathered from the farming environment, and that this occurs as a cross-cultural phenomenon. Thus as agricolture grows and old forest growth declines and is farther and farther away from the dwellings (and gatherers) there is growing reliance on plant foods fron environments disturbed by human activitiy, individual fields, border areas, footh paths etc. Undoubtedly, species composition changes with land use change and agronomic practices. New species are brought into the diet through a process of experimentation, but not without difficulty.

[42] Conklin H (1961) “The study of shifting cultivation”. Current Anthropology 1:27-61; Kunstader P (1978) “Ecological modification and adaptation: An ethnobotanical view of Lua’swiddeners in northwesterne Thailand”. In R. Ford (Ed.) The nature and status of ethnobotany. Ann Arbor: University of Michigan Museum of Anthropology

[43] Price LL (2006) op. cit.

[44] Stepp (2002) op. cit.; Moerman (2001) op. cit.

[45] Per inciso, questa semplificazione ha in certi casi portato ad un peggioramento dello stato di salute, se è vero che, come indicano i dati sulle popolazioni di cacciatori-raccoglitori ancora esistenti, gli agricoltori lavoravano di più ed erano peggio nutriti, con un minor tasso di sviluppo neonatale, un maggior tasso di malattie (di solito con maggiori infestazioni parassitarie), e minor longevità rispetto ai cacciatori-raccoglitori (probabilmente per un impoverimento della varietà di nutrienti e composti secondari ingeriti). Diamond 1997 op. cit.; Johns 1990 op. cit.; Kiple 1993 op. cit.; Vickers 1994 op. cit.

[46] Logan, Dixon, 1994 op. cit.

[47] Etkin N.L. (Ed.) 1996 op. cit.

[48] Va sottolineato che l’identificazione delle piante come medicinalmente attive da parte delle popolazioni non coincide necessariamente con una loro effettiva efficacia. L’effetto placebo e le influenze culturali sono sempre presenti.

Uomo e piante 6/dimoltialtri

Ritorno dopo un momentaneo ma necessario “stacco” alla mia soap su uomini e piante. Se siete ancora con me 🙂 siamo arrivato alla puntata numero 6, e le precedenti sono qui, qui, qui, qui, e qui

E’ arrivato il momento di esplicitare meglio l’ipotesi co-evolutiva della nascita della medicina, e per fare ciò è necessario fare un passo indietro per giustificare l’idea che esista una connessione significativa e preculturale tra uomo e piante.

La teoria unificata delle comunicazioni cellulari
Come ci ricorda Meinwald [1] il nostro è un modo di suoni e visioni, e tendiamo a non renderci conto degli eventi chimici che ci circondano, del fatto che tutti gli organismi emettono e rispondono a segnali di tipo chimico, formando una vasta rete di interazioni comunicative fondamentali, attrattive, difensive, associative, ecc.

Fin dalle origini della vita infatti, il problema che i primi organismi cellulari hanno dovuto risolvere è stato quello della comunicazione tra cellula ed ambiente circostante e tra cellula e cellula, ed il problema è stato risolto da tutti gli organismi nello stesso modo, attraverso il linguaggio di molecole che possono penetrare le membrane e interagire con il nucleo oppure che trovano recettori specifici sulla membrana cellulare che mediano poi dei cambiamenti interni.

Ragionando da una prospettiva abbastanza ampia è quindi ovvio che uomini e piante, anzi, animali e vegetali, debbono mostrare dei legami, non soltanto filogenetici ma di relazione, comunicativi: affinché la vita di organismi diversi, anche appartenenti a Regni differenti,  possa prosperare in uno stesso ambiente, vi sono state, e vi devono essere state, continue relazioni mediate da un linguaggio molecolare.

La “teoria unificata delle comunicazioni cellulari” vuole che queste relazioni, ed i percorsi biogenetici del metabolismo secondario che creano le molecole messaggere, siano nati molto presto nella storia dell’albero evolutivo e siano spesso comuni tra i Regni Animalia e Vegetalia. [2] Ciò significa che nonostante la distanza filogenetica tra organismi appartenenti ai due Regni, essi possano però riconoscere gli stessi messaggeri. [3] Questo dato di base spiega la possibilità delle interazioni tra piante ed animali ed il ruolo di intermediari che hanno i metaboliti secondari.

Come rispondere all’ambiente

La possibilità per una pianta di “leggere” i messaggi di altre piante le permette di rispondere a degli indizi ambientali modificando il proprio schema di risposta. Organismi animali possono usare questi indizi per riconoscere lo stato dell’ambiente esterno ed “decidere” come allocare le proprie risorse energetiche.

Un esempio di questo utilizzo dei messaggi molecolari negli animali superiori potrebbe essere legato al fenomeno della senescenza. Organismi che si siano evoluti in ambienti mutevoli possono trarre vantaggio dalla capacità di puntare su un successo riproduttivo immediato a scapito della longevità in caso di ambiente più favorevole, o di puntare sulla longevità e su una ritardata maturazione sessuale in caso di condizioni sfavorevoli. [4]

Esempi di questi percorsi di allarme comprenderebbero varie chinasi legate alla sopravvivenza delle cellule, i fattori di trascrizione NRF2 e CREB, e le deacetilasi istoniche della famiglia della sirtuina, una proteina nota come Sir2 nei lieviti e SIRT1 nell’uomo.

Le Sir2 (Silent information regulator 2), sono presenti in tutti gli organismi, dagli eubatteri agli eucarioti, compresi gli esseri umani. Svolgerebbero due funzioni primarie nei mammiferi: la prima è  coordinare gli schemi di espressione genica (ovvero decidere quali geni sono attivati e quali disattivati in ogni singola cellula, per evitare ad esempio che una cellula renale inizi ad esprimere tendenze epatiche) e mantenere la stabilità di certe regioni cromosomiche e sopprimere l’esagerata espressione di certi geni (silenziamento genico) aumentando la stabilità del genoma; la seconda è funzionare da agenti riparatori emergenziali in caso di danno al DNA. [5] Il problema sorge dal fatto che quando le sirtuine sono occupate a riparare il DNA non regolano più l’espressione dei geni. Fino a che i danni al DNA sono rari le sirtuine riescono a compiere entrambi i compiti con efficienza, ma quando questi danni aumentano (tipicamente con l’età) la de-regolazione dell’espressione genica diventa cronica, e questo sembra essere legato, nei modelli animali utilizzati, a fenotipi di senescenza. [6]

Negli ultimi decenni sono stati scoperti molti composti di origine vegetale (tre esempi sono resveratrolo, i sulforafani ed i curcuminoidi) sintetizzati in risposta a vari tipi di emergenza (siccità, radiazioni, attacchi di insetti, infezioni, ecc.) per stimolare diverse risposte adattive e la rigenerazione cellulare stimolando una maggior espressione di sirtuine ed allungando la vita media,  proteggendo le cellule da lesioni stimolando la produzione di antiossidanti, fattori neurotropici ed altre proteine correlate allo stress.

Il modello coevolutivo

Ma il legame che viene proposto va oltre al dato generalizzato della teoria unificata delle comunicazioni cellulari, anche se si fonda su di essa. Esso si basa sull’ipotesi che l’utilizzo delle piante come fonte privilegiata di nutrienti abbia plasmato la fisiologia dell’uomo.

I nostri antenati, secondo l’ipotesi antropologica attualmente più accreditata, erano onnivori-foliovori, nel senso che avevano una decisa preferenza, certamente ispirata dalla necessità, per le piante ed in particolare per le foglie. E’ molto probabile che l’uomo preferisse sempre cibo denso in energia e povero di composti tossici (carne, tuberi, frutta) piuttosto che foglie; d’altro canto tuberi e frutti non sono disponibili tutto l’anno e sono più difficili da scovare, mentre le foglie sono più facilmente sfruttabili perché sono sempre presenti su tutto il territorio antropizzato, ed è probabile che siano sempre stati parte della dieta, oltre ad essere un “salvavita” in caso d’emergenza.

Questa forzata “convivenza alimentare” con le piante ci ha costretti a confrontarsi con molteplici messaggi chimici (spesso difensivi e quindi tossici) ai quali è stato necessario fornire delle risposte, cioè adattarsi, in qualche modo co-evolversi con essi e con le piante che li contenevano.

La tesi sostenuta da un certo filone antropologico (vedi Johns [12]) è che l’adattamento abbia fatto sì che le proprietà che rendevano le piante tossiche o non commestibili (limitando le possibilità di alimentazione dell’uomo) siano le stesse che le hanno rese attive a livello farmacologico (rappresentando quindi un fattore di promozione della salute). La nostra specie, nell’adattarsi alle tossine delle piante, le ha portate ad essere una parte essenziale della nostra ecologia interna, le ha “introiettate” facendo sì che non ci danneggiassero (o almeno non ai livelli ai quali le ingeriamo) ma anzi che potessero esserci utili.

Ne consegue l’ipotesi che gli esseri umani selezionino le piante sulla base della loro composizione chimica e che l’ingestione dei composti chimici vegetali sia parte di una risposta adattiva integrata che possiede elementi biologici e culturali, e che la nostra eredità biologica, associata allo snodo essenziale costituito dalla rivoluzione neolitica (la domesticazione delle piante e la loro coltivazione), pongano le basi per la nascita dell’uso medicinale delle piante. [7]

Questa ipotesi è andata rafforzandosi nei decenni grazie ai molti studiosi che l’hanno corroborata con vari pezzi di puzzle.


Prove indirette: i nostri simili
Un supporto, seppur indiretto, alla tesi che l’utilizzo delle piante a scopo medicinale da parte dell’uomo abbia origini preculturali e coevolutive viene dagli studi sulla zoofarmacognosia, ovvero sull’automedicazione con le piante da parte degli animali non umani. [8]

Glander, Lozano, Huffman ed altri autori portano vari esempi di zoofarmacognosia, alcuni dei quali riporto di seguito. [9]

Gli elefanti malesi si cibano di una leguminosa [Entada schefferi Ridley – Fabaceae] prima di intraprendere un lungo cammino; in India i cinghiali selvatici dissotterrano e si nutrono in maniera selettiva delle radici di Boerhavia diffusa L. [Nyctaginaceae], usate anche dagli esseri umani come rimedio antelmintico, mentre i maiali si ciberebbero delle radici del melograno [Punica granatum L. — Punicaceae] per la sua tossicità sui nematodi. Gli scimpanzè maschi della Tanzania occidentale, nei periodi dell’anno nei quali aumentano le infestazioni di nematodi, utilizzano le foglie di Aspilia spp. (spesso A. mossambicensis) [Asteraceae] seguendo un rituale molto particolare e completamente diverso dalla ritualità normalmente associata all’alimentazione: arrotolano le foglie, le mettono tra lingua e guancia e poi le ingoiano senza masticarle.

Va notato che Aspilia contiene principi attivi antibatterici, antifungini e antelmintici (thiarubrina A), e che la modalità di assunzione potrebbe favorire l’assorbimento di tali composti attraverso le mucose della guancia. Gli scimpanzè mostrano altri comportamenti molto interessanti: le femmine ingeriscono foglie di Lippia plicata Bak. [Verbenaceae] (usata dagli indigeni come stomachico ed insetticida) quando sembrano avere dei disturbi gastrointestinali, e vari maschi malati sono stati notati mentre succhiavano il midollo del fusto di Vernonia amygdalina Del. [Asteraceae], una pianta molto amara (contiene lattoni sesquiterpenici amari, antelmintici e antischistosomiaci), raramente usata a scopo alimentare ma comune nella medicina tradizionale dell’Africa orientale in caso di febbri malariche, schistosomiasi, dissenteria amebica, elmintiasi, diarrea, mal di stomaco, inappetenza e scorbuto, e dagli agricoltori in caso di parassiti intestinali dei maiali.

Negli esseri umani la Vernonia è efficace contro Giardia lamblia, ossiuri e nematodi dei generi Ancylostoma, Uncinaria, Necator. E’ interessante notare come i primati utilizzino raramente le foglie e la corteccia della pianta, nonostante la maggior concentrazione in composti attivi. Il fatto che queste parti della pianta contengano anche composti tossici è una possibile spiegazione di questo comportamento. I primati utilizzano in maniera simile anche i fusti di Palisota hirsuta (Thunb.) K. Schum. [Commelinaceae] e Eremospatha macrocarpa (Mann and Wendl.) Wendl. [Palmae].

Alouatta palliata (una scimmia urlatrice) mostra una frequenza molto ridotta, rispetto agli scimpanzè, di carie o gengiviti, dato in parte spiegabile con la dieta povera in frutta zuccherina, ma forse anche con il consumo di anacardi [Anacardium occidentale L. — Anacardiaceae], frutti che contengono acido anacardico e cardolo, composti attivi contro i batteri gram-positivi tipici della carie; le stesse scimmie urlatrici sono soggette a parassitosi gastrointestinale, ma quelle di loro che si alimentano anche con frutti dei ficus [Ficus spp. — Moraceae] lo sono di meno. Dato che il latice di Ficus è antelmintico, è possibile che il consumo di foglie e frutti contribuisca ad abbassare il carico di parassiti. [10]

Uno dei primati meno comuni (Brachyteles arachnoides) è preda, come altri, di parassitosi intestinale, ma tra i gruppi che ne soffrono di meno si nota uno schema di alimentazione particolare.  All’inizio della stagione delle piogge questi individui fanno uno sforzo particolare per mangiare piante che prima non assaggiavano, in particolare le leguminose Apuleia leiocarpa (J. Vogel) J.F. Macbr. e Platypodium elegans Vogel. [Fabaceae] (ricche in composti antimicrobici e isoflavoni).

I Colobus rossi normalmente preferiscono foglie giovani, ricche in proteine e povere in tannini ed altri composti fenolici, ma di quando in quando mangiano foglie ad elevato contenuto in tannini, che potrebbero servire per detossificare gli alcaloidi e ridurre il gonfiore intestinale. [11]

I babbuini soffrono comunemente di schistomatosi, ed è stato notato, nei gruppi che vivono presso le cascate Awash (Etiopia), un comportamento particolare degli individui che ne sono affetti gravemente: essi si nutrono di foglie e frutti di Balanites aegyptiaca (L.) Del. [Zygophyllaceae], che contengono diosgenina, attiva contro Schistosoma cercariae.

Prove dirette: la fisiologia ed il comportamenti umani. [12]
Se l’ipotesi appena esposta è valida, ci deve essere rimasta qualche traccia del processo co-evolutivo nel nostro organismo, sia di tipo fisiologico che comportamentale. La difficoltà sta però nel riconoscere se e quali di queste caratteristiche siano tracce coevolutive, perché ci è dato interpretarle come tali solo a posteriori, senza il beneficio di una prova diretta, ma solo tramite inferenze.

Ad esempio, gli esseri umani hanno un intestino adatto a cibi densi di nutrienti ma mantengono una certa capacità di digerire fibre, e possono sopportare dosi relativamente elevate di composti allelopatici; l’uomo è inoltre capace di sopperire al proprio fabbisogno di acidi grassi essenziali tramite i loro precursori presenti nei vegetali.  Queste caratteristiche potrebbero indicare una consuetudine dell’uomo con le piante. Si è anche ipotizzato che la preferenza dell’uomo per il sale (di più di un ordine di magnitudo superiore al suo fabbisogno) potrebbe essere spiegato con la carenza di sodio nelle piante della savana dove Homo si è evoluto, e, come si è visto più sopra, l’incapacità di sintetizzare la vitamina C potrebbe essere spiegata con la sua ubiquità ed abbondanza nei vegetali.

La presenza nella saliva dell’uomo di proteine ricche in prolina (PRP) è un altro importante esempio: l’uomo è in grado di rispondere all’ingestione di tannini mantenendo le parotidi in uno stato di induzione, tanto che il 70% delle secrezioni salivari è del tipo PRP: queste PRP possono servire a legare i tannini presenti nel cibo e renderli meno irritanti per il tratto gastrointestinale e forse per renderli meno attivi sul cibo che ingeriamo (riducendone gli effetti antinutrizionali).

Esempi più generici del rapporto dell’uomo con sostanze velenose sono il vomito ed i sensi chimici.


Il vomito è un istintivo meccanismo di rigetto di una sostanza che si è immediatamente riconosciuta come tossica o in qualche modo non desiderata.

I sensi chimici, gusto ed olfatto mostrano di poter discriminare sostanze vegetali potenzialmente pericolose da altre potenzialmente utili (discriminando tra amaro e dolce ad esempio), e mostrano di poter attivate risposte condizionate molto potenti, in particolare quelle negative associate al cibo. Ciò significa che a seguito di un malessere gastrointestinale legato temporalmente (a prescindere dal legame causale) all’ingestione di cibo, il sapore e l’odore di quel cibo saranno legati al malessere rendendo molto difficile cibarsene ancora. Questo è un tipo di meccanismo di apprendimento, perché una sostanza che abbia provocato un malessere gastrointestinale probabilmente è tossica, o comunque dobbiamo considerarla come tale. [13]

C’è una differenza importante tra olfatto e gusto, perché il primo, essendo molto più plastico del gusto, è meno legato alla percezione negativa, mentre quest’ultimo, essendo limitato alla discriminazione di quattro o cinque sapori, è più fortemente e più meccanicamente legato alla risposta condizionata.


Altro indizio molto rilevante è la presenza di enzimi detossicanti a livello epatico (e in misura minore renale, intestinale e polmonare), enzimi che rendono meno tossiche e facilmente eliminabili varie sostanze di origine vegetale, e che non sono molto specializzati, non hanno cioè la capacità di detossificare sempre e con efficienza una sostanza particolare, ma hanno la capacità plastica di adattarsi a molti problemi diversi, e questo è un indizio che si situa bene nel quadro di una dieta umana prevalentemente onnivora-foliovora (da cui l’esistenza di enzimi che hanno come substrato delle sostanze vegetali), con fonti alimentari molto diversificate (da cui la necessità di plasticità nella risposta).

Possiamo considerare il ruolo degli enzimi detossificanti in congiunzione con la neofobia, cioè il fatto che l’uomo adulto mostri la tendenza ad esser circospetto rispetto alle sostanze che deve assumere. [14]

Dato che il meccanismo epatico esiste per detossificare una sostanza potenzialmente tossica, il fatto di assaggiare sempre piccole quantità di un cibo o di una sostanza nuova permette di non avvelenarsi accidentalmente, e di non sovraccaricare i meccanismi detossificanti. Quindi la combinazione dei due meccanismi ci può permettere di assaggiare un cibo nuovo che può essere pericoloso senza però morire dopo averlo assaggiato.

————————————-

Note al testo

[1] Eilser T, Meinwald J (1995) “Preface” in Thomas Eilser and Jerrold Meinwald (eds) Chemical ecology: The Chemistry of Biotic Interaction National Academy Press Washington, D.C. 1995

[2] Roth J., Leroith D. (1987) The Sciences, May-June:51

[3] Lamming D.W., Wood J.G., Sinclair D.A. (2004) “Small molecules that regulate lifespan: evidence for xenohormesis”. Mol Microbiol; 53(4):1003-9; Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., Lavu, S., Wood, J.G., et al. (2003) “Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan”. Nature 425: 191–196; Mattson MP, Cheng A. (2006) “Neurohormetic phytochemicals: Low-dose toxins that induce adaptive neuronal stress responses”. Trends Neurosci; 29:632–9

[4] Kuzawa C et al. (2008) “Evolution, developmental plasticity and metabolic disease” in SC Stearns and JC Koella (eds.) Evolution in health and disease 2nd edition Oxford UP; Austad SN, Finch CE (2008) “The evolutionary context of human aging and degenerative disease” in in SC Stearns and JC Koella (eds.) op. cit.; Ackermann M e Pletchr SD (2008) “Evolutionary biology as a foundation for studying aging and origin-related disease”. In SC Stearns and JC Koella (eds.) op. cit.

[5] Guarente, L. (2000) “Sir2 links chromatin silencing, metabolism and aging” Genes Dev 14:1021-1026

[6] Oberdoerffer et al (2008) “SIRT1 redistribution on chromatin promotes genome stability but alters gene expression during aging”; Cell 135,  6

[7] Con questo non si intende proporre l’appiattimento della cultura sulla natura, la riduzione della medicina a fatto biologico e della malattia a rapporto ecologico. Nè si suppone che l’utilità presente dei composti xenobiotici per l’organismo che li ingerisce siano in parte o del tutto riconducibili ad adattamenti passati. Una origine evolutiva, spiega bene Gould (Gould, S.J. “Darwin tra fondamentalismi e pluralismo”. In Pino Donghi (a cura di) La medicina di Darwin. Roma, Laterza, 1998) non si appiattisce su quella adattiva, perché la selezione naturale non esaurisce tutti i meccanismi evolutivi, e l’enorme chemiodiversità delle piante (che esprimono circa i 4/5 di tutti i i composti farmacologicamente attivi conosciuti) offrirebbe comunque materiale farmacologicamente attivo al di là dei rapporti ecologici animale-pianta.

[8] Nel lavoro seminale in questo campo (Rodriguez, E., R. Wrangham. H. Stafford e Downum K. eds., (1993) “Zoopharmacognosy: The use of medicinal plants by animals”. Recent advances in phytochemistry, 89-105) gli autori (responsabili anche del conio del termine zoofarmacognosi) scrivono che:

“The combination of natural products, trichomes and other leaf features are important in the fitness of wild animals,”…“the observation of animals using plants is not new since Amazonian Indians and many people of the African forests tell of how animals use plants and how they copy the animals”

[9] Glander K.E. “Nonhuman primat self-medication with wild plant foods”. In N.L., Etkin  (Ed.), 1994 op. cit. pp. 227-239; Lozano, G.A. (1998) “Parasitic stress and self-medication in wild animals” Advances in the study of behaviour. 27: 291-317; Huffman M.A. (2001) “Self-medicative behavior in the African Great Apes: An evolutionary perspective into the origins of human traditional medicine”. BioScience.; Vol. 51(8): pp. 651-661.

[10] Una ipotesi più difficile da sostanziare ma affascinante è quella che vuole che l’ingestione di piante da parte delle femmine di Alouatta serva a modificare il normale rapporto maschio/femmina della prole, Glander (1994 op. cit.) ipotizza che alcuni composti delle piante ingerite possano modificare la concentrazione ionica delle mucose vaginali delle femmine, e che questo a sua volta possa modificare selettivamente l’accesso degli spermatozoi che portano un cromosoma X rispetto a quelli a Y dato che X è elettropositivo mentre Y è elettronegativo.

[11] Lo stesso fanno altri primati ed è difficile spiegare questo comportamento senza chiamare in causa la zoofarmacognosi anche perché i tannini sono forse l’unico gruppo di composti che non sono detossificabili se non parzialmente. I tannini possono legarsi e precipitare, e quindi inattivare, le molecole azotate, come appunto gli alcaloidi. Interessante notare che i Colobus mangiano anche terre ricche in caolino (geofagia), che grazie alla loro elevata capacità di adsorbimento possono intrappolare e rendere indisponibili all’assorbimento varie tossine (e nutrienti).

[12] Johns T (1990) The Origins of Human Diet and Medicine. University of Arizona Press; Consiglio, C. e Siani V. (2003) Evoluzione e alimentazione: il cammino dell’uomo. Torino: Bollati Boringhieri

[13] Le risposte condizionate positive, cioè quelle che potrebbero essere molto utili, sono invece molto meno forti, più labili, di quelle negative.

[14] Il bambino è molto meno neofobico, ed anche questo è un meccanismo evolutivo: esso deve infatti poter fare esperienza del mondo, deve poter “assaggiare” in vari modi la realtà che lo circonda. L’uomo adulto invece, raggiunto il suo bagaglio di esperienze, sta più attento.

Uomo e piante 5/dimoltialtri

Ed eccoci all’ultima puntata della sezione introduttiva della serie uomo/piante, dove cercherò di sintetizzare i dati principali relativi alla nascita dell’agricoltura, in quanto evento importante nell’articolazione del rapporto tra piante e uomo. Le puntate precedenti si trovano qui, qui, qui, e qui.

L’agricoltura
Gli antecedenti
Il passaggio da caccia-raccolta ad agricoltura, (la cosiddetta “rivoluzione neolitica“), non fu netto e puntuale, nè avvenne ovunque, nè si presentò con le stesse modalità. Fu lento, graduale, non lineare, avvenne indipendentemente in molti luoghi. Come nota Diamond, l’agricoltura non fu una scoperta o una invenzione, bensì una “evoluzione che prese il via come sottoprodotto di scelte spesso inconsce”. (30)

E’ ipotizzabile che le prime esperienze di coltivazione avvennero all’interno delle foreste pluviali, dove a causa della forte competizione per la luce la copertura forestale non permette la crescita del sottobosco. Solo la casuale caduta di alcuni alberi, creando delle radure naturali dove penetra il sole, permette la germinazione dei semi rimasti dormienti e la crescita di varie specie diverse.

I gruppi umani che abitavano la foresta, insediandosi nelle vicinanze di tali radure, ebbero l’opportunità di osservare la crescita di questi “giardini” spontanei.  In più, le deiezioni del gruppo arricchivano il terreno di composti azotati e di semi delle piante alimentari favorite dal gruppo stesso. In questo modo il gruppo avrebbe potuto osservare le fasi di crescita proprio delle piante alimentari a lui utili, e con il tempo avrebbe portato al costume di facilitare la crescita di tali piante  migliorando le condizioni, eliminando la competizione di altre piante, fino alla creazioni di radure artificiali mediante l’abbattimento di alberi di piccola taglia, ovvero avviandosi verso la coltivazione e la addomesticazione con la tecnica del debbio (anche addebbiatura, o taglia-e-brucia, dal termine inglese slash-and-burn: il taglio della vegetazione, il suo essiccamento e combustione per creare piccoli appezzamenti da coltivare a maggese).

Il passaggio dalla coltivazione pre-agricola (intesa come il complesso delle operazioni di semina o impianto, di cura e di raccolta delle piante selvatiche o addomesticate, con o senza aratura del terreno) all’agricoltura (intesa come la coltivazione di piante addomesticate con aratura sistematica del terreno), (31) avviene in maniera indipendente in vari siti, nell’arco di tempo che va da ca. 10.000 anni fa a 3.500 anni fa.

La nascita dell’agricoltura
Medio Oriente
In Medio Oriente l’evidenza archeobotanica sulla nascita dell’agricoltura si concentra nell’area intorno alle pianure fertili della Mesopotamia dal levante meridionale alle colline meridionali ai piedi dei Monti Zagros.

Secondo l’ipotesi ricevuta sulla nascita dell’agricoltura in Medio Oriente, basata soprattutto sui lavori di Hillman (incentrati sui ritrovamenti presso il sito di Tell Abu Hureyra, sulle rive dell’Eufrate in Siria), la coltivazione dei cereali iniziò in risposta ad un improvviso cambiamento climatico avvenuto tra 11.000 e 10.000 anni C14 fa (nel cosiddetto stadiale del Dryas recente). Il passaggio, sempre secondo questa ipotesi, avvenne in tempi relativamente brevi ed in maniera puntuale, e le cultivar sviluppate in questo periodo di tempo viaggiarono dalla loro zona di origine in tutta Europa insieme agli agricoltori migranti, ed insieme ai loro idiomi di tipo Indo-Europeo (secondo la cosiddetta Ipotesi Anatolica o Teoria della Discontinuità Neolitica di Renfrew). (32)

Secondo la teoria corrente, questo passaggio climatico, che portò a condizioni più fredde e secche, spinse verso il declino varie specie selvatiche meno adattate al clima arido, in primis le lenticchie [Lens spp. — Fabaceae] ed altri legumi, in seguito le forme selvatiche del Triticum (il farro selvatico – Triticum dicoccoides (Korn. ex Asch. & Graebn.) Schweinf. e il piccolo farro selvatico – Triticum boeoticum Boiss., (33) di Secale spp., poi Stipa spp., Stipagrostis spp., Scirpus spp., e per ultime le specie più resistenti alla siccità, le Chenopodiaceae.

Lenticchie

Segale

Questo declino spinse probabilmente le popolazioni umane a coltivare alcune specie più produttive per sopravvivere al periodo di carestia. I frutti del farro selvatico erano abbastanza grossi da essere sfruttati per sopperire alla riduzione della vegetazione. Una successiva ibridazione del farro aumentò l’eterozigosi, causando la scompare in alcuni individui del rachide fragile che aiuta la disseminazione anemofila ma rende difficile la raccolta.

Un recente studio (34) mette però in dubbio sia la data di inizio dei primi “esperimenti” agricoli, che verrebbe anticipata di molto, sia i tempi brevi per la stabilizzazione delle cultivar (che avrebbero invece avuto bisogno di millenni per diventare stabili). La scoperta di più di 90.000 frammenti vegetali presso il sito archeologico di Ohalo II in Siria, risalenti a 23.000 anni fà, indicherebbe la raccolta di cereali selvatici 10.000 anni prima del periodo previsto dalla teoria corrente, e certamente prima del Dryas.

Inoltre, lo studio delle frequenze di individui con mutazione del rachide (la forma rigida che riduce la dispersione dei frutti) mostra che tra il momento della sua prima apparizione (9.250 anni fà) e la sua fissazione (ovvero con la stabilizzazione della mutazione nella popolazione, che diventa monofiletica) passarono ben 3.000 anni, quando già la dispersione dell’agricoltura era iniziata, in tempi quindi molto più lunghi di quelli previsti dalla teoria ricevuta. Per finire, il modello matematico proposto supporta una origine delle piante coltivate attraverso processi più complessi, di inter-ibridazione tra varie specie, e in vari tentativi di addomesticazione.

Quale che sia stato l’esatto momento e l’esatto meccanismo che permise la selezione di piante con caratteristiche genetiche particolari, la selezione di questa caratteristica favorevole per l’uomo rese possibile raccolti più ricchi in meno tempo e con meno perdite, capaci di sostenere popolazioni umane più dense. L’ibrido venne coltivato insieme al piccolo farro selvatico e all’orzo spontaneo [Hordeum spontaneum K. Koch o H. vulgare subsp. spontaneum (K.Koch) Thell.].

Orzo selvatico

A partire dal Neolitico preceramico A (PPNA – ca. 10.300 anni fa) il clima tornò più caldo e umido facilitando così l’espansione delle coltivazioni. Le tre specie di cereali summenzionate passarono, in un lungo processo di interazione con l’uomo, dallo stadio selvatico a quello di “coltivazione incipiente” e di “addomesticazione”, passano cioè attraverso la trasformazione genetica verso forme addomesticate grazie all’azione di popolazioni sempre più sedentarie, fino ad arrivare ad una vera e propria fase di agricoltura a livello di villaggio. Questo stadio viene anche definito come stadio della coltivazione incipiente e della addomesticazione, durante il quale iniziano quei processi di modificazione genetica delle piante che portano verso la addomesticazione, e dove le popolazioni passano da sostentamento grazie a raccolta semisedentaria all’agricoltura.

L’evidenza più ampia di uno stile di vita schiettamente agropastorale si ha però solo per il periodo PPNB (da 9 500 a 7 500 anni fa), detto anche stadio dell’agricoltura piena.
E’ a questo periodo che fanno riferimento le evidenze archeobotaniche sulla presenza di tutte le principali specie agricole: orzo [Hordeum vulgare tetrastico e distico], piccolo farro [T. monococcum, forma coltivata di T. boeoticum] e farro [T. dicoccum forma coltivata di T. dicoccoides], lenticchie [Lens culinaris Medik — Fabaceae], piselli [Pisum sativum L.– Fabaceae], ceci [Cicer arietinum L.– Fabaceae], lino [Linum usitatissimum — Linaceae] e Vicia ervilia (L.) Willd. [Fabaceae].

Alla fine del PPNB l’agricoltura viene praticata in tutto il Sud Est asiatico e si sposta ad Ovest verso Cipro, attraverso l’Anatolia verso l’Europa, a Sud Est verso l’Egitto e ad Est verso l’Asia Centrale e Meridionale.
Tra 7000 e 5000 anni fa le coltivazioni vengono portate nelle pianure aride tra il Tigri e l’Eufrate, dove inizia la coltivazione intensiva supportata dall’irrigazione, e la parallela nascita delle prime città e dei primi piccoli templi Sumeri. (35)

Asia
Non esistono dati archeobotanici di questo tipo, a questo livello di dettaglio, per l’Asia.

I dati permettono solo di dire che in Cina centro orientale, nell’area dello Huang-ho (Fiume Giallo) tra 8.000 e 6.000 anni fa, nel Primo Paleolitico, esistevano degli insediamenti umani che praticavano la coltivazione del riso e di due specie di miglio [Panicum miliaceum L. — Poaceae; Setaria italica (L.) P. Beauv — Poaceae] (più dubbia è invece la presenza di coltivazioni di soia [Glycine max (L.) Merr. — Fabaceae]).

Riso

Miglio

Da quest’area il riso viaggiò con l’uomo verso Nord in Corea, dove era certamente coltivato 3200 anni fa, e forse verso ovest, in India settentrionale, anche se la presenza del cereale nel subcontinente 4500 anni fa potrebbe anche essere dovuta ad una addomesticazione indipendente.

Il viaggio del riso fu fermato dal clima equatoriale in Indonesia, da dove l’agricoltura si espande (verso ad esempio la Nuova Guinea) con un modello alternativo di agricoltura incipiente, basato su radici e tuberi come l’igname [Dioscorea alata L. e D. esculenta (Lour.) Burkill. — Dioscoreaceae], e il taro [Colocasia esculenta (L.) Schott — Araceae], piuttosto che su cereali (secondo alcuni autori le prime coltivazioni sono proprio state quelle di radici e tuberi nelle foreste tropicali).

Africa
Contrariamente a quanto solitamente ritenuto, è probabile che l’agricoltura si sia sviluppata in maniera indipendente anche nell’Africa tropicale nord, a sud del Sahara, seguendo in questo caso un modello “misto”: nei climi più secchi del Nord utilizzo e addomesticazione di cereali come il sorgo [Sorghum bicolor (L.) Moench.] e il miglio perla [Pennisetum glaucum — (L.) R. Br.] insieme a legumi quali Vigna unguiculata (L.) Walp. (fagiolo dell’occhio), V. subterranea (L.) Verdc. (pisello di terra) e Macrotyloma geocarpum (Harms) Maréchal & Baudet, e all’albero del Karitè [Vitellaria paradoxa C. F. Gaertn. — Sapotaceae]; nel Sud più umido radici e tuberi [Dioscorea spp.], riso africano [Oryza glaberrima Steud.] e olio da palma [Elaeis guineensis Jacq. — Arecaceae].

Sorgo

Fagiolo dell’occhio

Comunque sia, in tutti questi siti si può parlare di modello agropastorale perché la coltivazione di cereali e legumi va sempre di pari passo all’allevamento di animali da carne e latte, come capre, pecore, ecc.

Le Americhe
Molto diversa è la situazione del continente Americano.
Anche qui abbiamo evidenza, per quanto scarsa e poco organica, della addomesticazione e coltivazione di piante, ma i dati archeologici indicano che non si arrivò se non molto tardi all’allevamento degli animali, per cui la dieta si basò per molto tempo quasi totalmente sulle specie vegetali coltivate o raccolte spontanee, con risultante deficit di proteine e grassi animali.

Vengono solitamente identificate tre aree principali di sviluppo: Mesoamerica (odierno Messico e Centro America), le Ande, e l’Amazzonia.

Mesoamerica
Le principali specie addomesticate in Mesoamerica furono il mais [Zea mays L. — Poaceae], i fagioli [Phaseolus vulgaris L.; P. coccineus L.; P. acutifolius A. Gray– Fabaceae], e le zucchine [Cucurbita pepo L.; C. mixta Pangalo– Cucurbitaceae], ma vengono raccolti e consumati molti frutti, come l’avocado [Persea americana Mill. — Lauraceae], la papaya [Carica papaya L. — Caricaceae], la guava [Psidium guajava L. — Myrtaceae], il sapote blanco [Casimiroa edulis La Llave & Lex. — Rutaceae] e negro [Diospyros digyna Jacq. — Ebenaceae], il peperoncino piccante [Capsicum spp. — Solanaceae] e la ciruela [Spondias mombin L. — Anacardiaceae].

Riguardo all’origine dell’agricoltura, i dati sono molto scarsi. Le evidenze archeologiche indicano che le foreste tropicali a stagione secca dei neotropici furono centri importanti di insediamento umano e coltivazione, coinvolgenti piccoli gruppi di coltivatori che si spostavano al cambiare delle stagioni

Con tutta probabilità la zucchina fu addomesticata ca. 10000 anni fa, ed uno studio recentissimo indicherebbe che il mais fu addomesticato ca. 8700 anni fà, a partire da una pianta selvatica denominata teosinte, nelle foreste tropicali dell’odierno Messico sudorientale, nella valle del Rìo Balsas, e che viaggiò con l’uomo fino a Panama ca. 7600 anni fà, fino ad essere coltivato nell’area settentrionale dell’America del Sud ca. 6000 anni fà. (36)

L’evidenza però suggerisce che le tre specie principali iniziarono ad essere coltivate insieme come sistema agronomico solo 3-4000 anni fa.

Teosinte

Ande
Le specie addomesticate sugli altopiani Andini erano due Chenopodiaceae [Chenopodium quinoa Willd. e Chenopodium pallidicaule Aellen.], i fagioli Lima [Phaseolus lunatus L.], la patata [Solanum tuberosum L. — Solanaceae], delle zucchine locali [Cucurbita moschata Duchesne, e C. ficifolia Bouche] e due camelidi, lama [Lama glama] ed alpaca [Vicugna pacos], almeno 5000 anni fa. Ma le popolazioni non svilupparono mai il sistema agropastorale tipico della mezzaluna fertile.

Amazzonia
In Amazzonia le specie addomesticate furono, come nei tropici asiatici, radici e tuberi, in particolare la manioca o cassava [Manihot esculenta Crantz. — Euphorbiaceae] e le arachidi [Arachis hypogaea L. — Fabaceae]-

Il passaggio all’agricoltura non avvenne invece mai in molte altre aree a clima comparabile come la California, l’Australia sud-ovest, l’Africa meridionale). (37)

Le conseguenze
In quasi tutte le aree di passaggio all’agricoltura la fonte primaria di cibo si ritrova nella combinazione tra uno o più cereali e uno o più legumi, che supplementavano la dieta con olii e amminoacidi assenti nei cereali, come la lisina.

Il passaggio ha probabilmente risposto a pressioni ed esigenze di equilibri energetici, di convenienza e di previsione del futuro, è stata una risposta al declino delle risorse (ad esempio la riduzione nel numero dei grandi mammiferi), alla maggior disponibilità di specie addomesticabili rispetto a quelle spontanee a causa dei cambi climatici della fine del pleistocene in Medio Oriente, ed inoltre ai progressi delle tecniche di stoccaggio del cibo. (38)

Lo spostamento di sempre maggiori settori della popolazione verso l’agricoltura e l’allevamento, porta ad un aumento della sedentarietà ed anche ad un aumento della disponibilità di cibo dal punto di vista quantitativo, mentre dal punto di vista della scelta porta forse ad una riduzione della diversità alimentare. Certamente rende possibile la vita ordinata secondo  stratificazioni sociali in comunità stabili. (39)

L’aumento delle calorie consumate può aver portato ad una iniziale minor morbilità, ma anche ad un aumento della fertilità e della densità abitativa, con conseguente aumento dei rifiuti, concentrati in zone specifiche, delle latrine, e degli allevamenti, tre fattori favorevoli all’insorgere di nuove malattie e di nuovi vettori di malattie: ratti, mosche, zanzare, topi, zecche. (40)

Gli stessi animali allevati divennero con tempo nuovi vettori di malattie, i maiali portarono ad esempio all’infezione da Ascaris, ed i bovini alla tubercolosi. Le feci accumulate favorirono il propagarsi degli elminti, le acqua sporche alla febbre tifoide.
Inoltre le modificazioni dell’ambiente richieste dall’agricoltura facilitarono il diffondersi di altre malattie per via oro-fecale; le opere di irrigazione e l’utilizzo di tecniche tipiche dell’agricoltura mobile come il debbio nelle foreste favorirono malaria, schistosomiasi e febbre gialla in Egitto, Mesopotamia ed India.

Se il peggioramento della qualità dell’alimentazione (e quindi delle capacità di resistenza dell’organismo) è andata parallela all’aumento delle fonti di infezione, è probabile che in tempi non troppo lunghi si sarà osservata una selezione degli individui più deboli o sotto stress maggiore (quindi un aumento della mortalità infantile), e la costruzione dell’immunità nei soggetti sopravvissuti. Quindi, col tempo, si sarà giunti al punto di equilibrio tra ospite e patogeno, punto al quale la maggior parte degli ospiti sopravvive e passa l’infezione, rendendo possibile la sopravvivenza del patogeno.

Dal punto di vista della struttura sociale e della gestione della salute e della malattia, una società agricola, che prevede un modello produttivo molto più spinto per sostenere la crescita demografica, prevede anche una stratificazione ed una gerarchizzazione, dove alcuni membri del gruppo avranno più potere, più ricchezza e maggior capacità decisionale di altri; la divisione del lavoro avrà portato individui e famiglie a specializzarsi in alcuni campi del sapere, tra i quali per l’appunto la medicina.

E’ probabile che le nuove malattie derivanti dall’aumento della densità e dalla sedentarizzazione abbiano messo in crisi e screditato i vecchi modi di gestire le malattie, i vecchi rimedi, aprendo la possibilità di nuove concettualizzazioni, più sofisticate ed elaborate. Tutto ciò crea un contrasto tra sapere medico popolare (il sapere precedente, che permane come “prima linea” di soccorso per il malato) e il “nuovo” sapere medico, colto ed arcano. La cura è più concentrata sul paziente, gestita agli inizi dal gruppo dei pari o dalla famiglia, passando poi per figure intermedie fino al trattamento da parte degli specialisti. (41)

La stratificazione favorisce quindi un maggior pluralismo di forme di cura ed un maggior scetticismo.
L’aumento del carico di lavoro spinge probabilmente alla ricerca/offerta di rimedi tonici (fisici, psicologici, sessuali). I gruppi che avevano maggiori conoscenze di zone ad elevata biodiversità vegetale avevano probabilmente maggior conoscenza delle piante medicinali, ma questa non era una conoscenza fortemente iniziatica, visto che per tutti era possibile avere esperienza delle piante. E’ probabile che alcune conoscenze fossero più iniziatiche, in particolare quelle legate agli uomini, che, non dovendo lavorare i campi e rimanendo sempre nello stesso luogo, visitavano di più la foresta e passavano ai figli i segreti delle piante, mentre le donne conoscevano molto bene le piante della zona di passaggio dalla foresta al coltivato, e si passavano le conoscenze quando (come succede in molte società) passavano dal loro villaggio a quello dell’uomo che sposavano.

—————————————————————————————-
Note

30. Diamond, op.cit. p.78

31. Le due definizioni sono prese da: Harris DR (2005) “Origins and spread of Agricolture” in G. Price (ed.) The Cultural History of Plants. Routledge, New York pp.13-26

32. cfr. Hillman, G.C. (1996) “Late Pleistocene changes in wild plant-foods available to hunter-gatherers of the northern Fertile Crescent: Possible preludes to cereal cultivation”. In D.R. Harris (ed.) The Origins and Spread of Agriculture and Pastoralism in Eurasia, London: UCL Press and Washington, DC: Smithsonian Institution Press, ma cfr. anche il recente lavoro di Abbo S et al (2010) “Yield stability: an agronomic perspective on the origin of Near Eastern Agriculture”. Vegetation History and Archaeobotany; DOI 10.1007/ s00334-009-0233-7, dove si mette in dubbio l’importanza dei cambiamenti climatici per lo sviluppo dell’agricoltura. In effetti gli autori sostengono che, al contrario, è la stabilità climatica il fattore necessario per una agricoltura sostenibile e per l’introduzione di nuove coltivazioni. Recenti studi sul DNA mitocondriale sembrano dare un colpo molto serio alla teoria Anatolica, dato che sembra da questi dati che i primi contadini europei non siano legati strettamente ai cacciatori-raccoglitori, nè ai primi agricoltori medio orientali (Renfrew C. (2010) Archaeogenetics — towards a ‘New Synthesis’? Curr Biol 20: R162-R165)

33. Alcuni autori riclassificano i due farri in maniera differente, rispettivamente come Triticum turgidum subsp. dicoccoides (Korn. ex Asch. & Graebn.) Thell. e Triticum monococcum L. subsp. aegilopoides (Link) Thell.

34. Robin G. Allaby, Dorian Q. Fuller, Terence A. Brown (2008) “The genetic expectations of a protracted model for the origins of domesticated crops” PNAS, 105 (37): 13982–13986

35. Nel tardo periodo di Ubaid e di Uruk (IV millennio a.C.) i sumeri avevano quasi il monopolio del grano ma a causa di eccessi e di errori di irrigazione e della progressiva salinizzazione del terreno il grano crebbe sempre meno facilmente e la specie più tollerante del sale, l’orzo, arrivò a predominare.
Per queste ragioni nel 3000 a.C. si avviano vie di scambio tra le zone dell’altipiano iraniano e la Mesopotamia, e poi tra la Mesopotamia del Sud e Valle dell’Indo.

36. Piperno RD, Ranere AJ, Holst I, Iriarte J, and Dickau R (2009) “Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Cenral Balsas River Valley, Mexico” PNAS 106 (13): 5019-5024

37. Johns 1990 op. cit.; Diamond 1997 op. cit.; Harris DR (2005) “Origins and spread of Agricolture” in G. Price (ed.) The Cultural History of Plants. Routledge, New York

38. Hillman, G.C. (2000) “The plant food economy of Abu Hureyra 1: the Epipalaeolithic”. In A.M.T. Moore, G.C. Hillman, and A.J. Legge (eds.) Village on the Euphrates: From Foraging to Farming at Abu Hureyra, New York: Oxford University Press, 327-399.  Hillman, G.C., Hedges, R., Moore, A., Colledge S., and Pettitt, P. (2001) “New evidence for late glacial cereal cultivation at Abu Hureyra on the Euphrates”. The Holocene 11, 383-393.

39. Diamond 1997 op. cit. Emboden WA Jr. (1995) “Art and artifact as ethnobotanical tools in the ancient near east with emphasis on psychoactive plants”. In R. E. Schultes, Siri Von Reis (ed.) Ethnobotany: Evolution of a discipline, New York: Chapman & Hall: pp. 93-107

40. cfr. Kiple 1993 op. cit. L’aumento delle calorie disponibili potrebbe aver portato ad un aumento della percentuale di adipe, che nelle donne, potrebbe avere portato ad un aumento della fertilità.

41. Kleinmann, A. Patients and healers in the context of culture.  Berkeley; University of California Press, 1980

Uomo e piante 4/dimoltialtri

Il rapporto con i patogeni
Se l’Africa è il luogo di origine e della prima evoluzione del genere Homo, per comprendere i rapporti coevolutivi tra Homo e patogeni è necessario approfondire l’argomento della distribuzione dei patogeni nel mondo, per capire se le malattie infettive siano distribuite a random o se esistano delle differenze  caratterizzanti il continente africano.

Dato che l’indagine archeologica è impossibile per l’assenza di resti analizzabili, una conferma diretta sulla distribuzione dei patogeni nel periodo di interesse non è possibile, ma secondo Guegan e collaboratori (23)  le inferenze dalle attuali distribuzioni permettono di dire che:

  1. la diversità delle specie patogene per l’uomo era ed è massima nelle zone tropicali e subtropicali.
  2. le specie di patogeni endemiche nelle zone temperate del mondo sono molto poche, mentre nelle zone tropicali sono presenti sia i patogeni endemici (patogeni, spesso zoonosi,  con stadi esterni legati a vettori o a riserve, come gli elminti) sia quelli a distribuzione globale (di solito virus, batteri e funghi trasmessi direttamente, adattati alle popolazioni umane, con ciclo vitale interno all’uomo e quindi poco sensibili all’ambiente).

Ciò significa che le diverse popolazioni umane non sono state esposte allo stesso carico di malattie infettive, e che le popolazioni africane hanno avuto (e hanno) a che fare con una maggior diversità di patogeni.

I Cro Magnon erano probabilmente organizzati in piccoli gruppi egalitari di cacciatori e raccoglitori e, a differenza di H. neanderthalensis, avevano una dieta dominata dagli alimenti di origine vegetale. (24)

Come tutti gli ominidi, essi convivevano con parassiti con i quali si erano evoluti in Africa (dai macroparassiti come Enterobius, Ancylostoma, Uncinaria, Necator, ai microparassiti come Plasmodium responsabile della malaria e Flavivirus della febbre gialla) ed anche con parassiti di altri animali, ad esempio il Trypanosoma brucei rhodesiense della tripanosomiasi africana, il Leptospira della leptospirosi, la Brucella della brucellosi, la Salmonella della salmonellosi, lo Schistosoma della schistosomiasi, la Amoeba della dissenteria amebica, il Treponema pertenue, proveniente da animali o carne decomposta, che causa la framboesia, la Borrelia che porta la borreliosi, e la Yersinia pestis.

E’ probabile che, se non esenti da malattie, i primi Homo sapiens fossero comunque poco colpiti da malattie infettive, e soffrissero prevalentemente di ferite, traumi e di infezioni croniche a bassa intensità della pelle e del tratto gastrointestinale, le uniche che potevano mantenersi attive in popolazioni numericamente esigue, o perché duravano a lungo (dissenteria amebica) o perché potevano alternarsi tra ospiti diversi (schistosomiasi).(25)

Certamente non soffrivano di infezioni acute come morbillo o varicella, infezioni virali che o uccidono o rendono immuni e necessitano quindi di grandi numeri per mantenersi attive. Inoltre la maggior parte dei gruppi umani erano sempre in movimento, quindi non esistevano quelle riserve di focolai infettivi tipici degli insediamenti stabili che sono le latrine, la spazzatura e gli allevamenti.

Un caso di studio: la malaria
L’analisi delle frequenze di alcune malattie a base genetica ha dato indizi molto importanti proprio sul fondamentale ruolo selettivo/evolutivo delle malattie infettive. L’esempio più studiato è certamente quello del rapporto tra disordini dell’emoglobina e la malaria, che mostra come nonostante i fattori stocastici impliciti nella trasmissione della malaria, il rischio di infezione dipenda in buona parte da fattori predeterminati a livello genetico. (26)

L’anemia falciforme risulta da una modificazione della subunità di tipo beta dell’emoglobina con formazione della emoglobina S (HbS) invece che la forma normale A (HbA). Negli omozigoti HbSS la HbS, quando viene ossidata, tende a precipitare e ad alterare la forma degli eritrociti, che divengono rigidi e distorti a falce (drepanociti), fragili, proni ad emolisi. I soggetti soffrono una elevata morbosità e mortalità, hanno aspettative di vita basse e raramente si riproducono.

L’allele modificato dovrebbe quindi essere estremamente raro o già scomparso, mentre si osservano frequenze molto elevate (più del 20%) nella fascia dell’Africa tropicale e frequenze meno elevate ma ancora superiori a quanto ci si aspetterebbe in Grecia, Turchia, India, Sicilia, ecc., mentre l’allele è assente in Nord America, Nord Europa, Australia.

Questa persistenza si potrebbe spiegare con una frequenza molto elevata di mutazione ricorrente, ma è più probabile che l’eterozigote HbAS abbia un vantaggio selettivo sugli individui “sani” HbAA. Questo vantaggio selettivo risulta evidente sovrapponendo le aree di persistenza dell’allele con quelle della distribuzione della malaria, aree che combaciano molto bene. Ed infatti si è scoperto che gli eterozigoti hanno ridotta prevalenza ed intensità della malaria rispetto agli omozigoti HbAA.

I parassiti della malaria (Plasmodium spp.) hanno più difficoltà a sopravvivere all’interno degli eritrociti anemici, probabilmente perché la loro azione pro-ossidante danneggia più facilmente l’eritrocita, causa una sua morte precoce e un rilascio di forme parassitarie immature che non sopravvivono all’esterno della cellula.

La stessa ipotesi di un vantaggio selettivo è stata avanzata anche per altre modificazioni patologiche dell’emoglobina, come alfa- e beta-talassemie, o per disfunzioni eritrocitarie, come ad esempio per il favismo, ovvero la deficienza dell’enzima Glucosio-6-fosfato deidrogenasi (G6PD). La deficienza di questo enzima chiave causa una reazione avversa a farmaci pro-ossidanti (l’emoglobina si ossida molto più facilmente, precipita e causa lisi dell’eritrocita) che si manifesta come una eccessiva distruzione di eritrociti. La ridotta capacità della cellula nel resistere allo stress ossidativo starebbe però alla base dell’effetto protettivo dalla mortalità da Plasmodium falciparum.

Come ha ben esposto Nina Etkin in un suo recente articolo la coscienza di questi legami evolutivi non è interessante solo dal punto di vista accademico, ma può funzionare come sapere applicato.(27) Comparare questi adattamenti biologici alla malaria agli adattamenti culturali, ad esempio la scelta delle piante medicinali o i comportamenti alimentari, ci può aiutare a spiegare perché tali adattamenti si siano presentati, e ci può aiutare a usare il dato etnobotanico come filtro per la ricerca di nuove piante utili.

L’autrice usa la pianta al momento più interessante per il trattamento della malaria, la Artemisia annua e la molecola artemisinina, mostrando come l’azione antimalarica derivi dal potenziale proossidante della molecola, che agisce sull’eritrocita e sul plasmodio, mimando in questo l’effetto di sensibilizzazione all’ossidazione delle anemie emolitiche.

L’autrice indica anche altri  comportamenti come probabili adattamenti culturali di fronte alla malaria, come la tradizione est africana di fermentare la birra in recipienti ferrosi. La birra così ottenuta sarebbe carica di ferro, un fattore chiave nei processi ossidativi che faciliterebbe la lesione ossidativa agli eritrociti.

L’espansione

Con l’espandersi verso le nuove aree temperate, H. erectus e le altre specie di Homo si lasciarono indietro (in Africa) tutte le malattie con vettori o ospiti intermediari speciali e specifici del continente (tripanosoma, arborvirus, ecc.), mentre il clima più mite riduceva il carico di patogeni; se a queste differenze sommiamo il disgelo seguito all’ultima glaciazione (10.000 anni fa), si spiega forse la crescita demografica e la conseguente aumentata necessità di cibo che spinse verso la domesticazione degli animali e verso l’agricoltura. (28)

In questo quadro assume particolare rilevanza sanitaria il fatto che queste popolazioni assumessero sempre una grande varietà di cibi vegetali, ricchi di una grande diversità di nutrienti e di tossine vegetali, responsabili, come vedremo più avanti, della riduzione delle infezioni enteriche. (29)

Sempre questo quadro suggerisce che fosse ancora assente la figura dell’esperto guaritore, dell’esperto di piante medicinali e di riti, e che la gestione della salute ed il trattamento della malattia (vista ancora come un evento che si originava all’esterno del corpo, biologico e sociale) fosse collettivo e non segreto, folklorico e comunque comprendente un complesso di terapie razionali, sia chirurgiche sia erboristiche, usate per curare malattie semplici (diarrea, costipazione, ferite, ecc.) più un uso di tonici primaverili o altro che forse apportavano nutrienti. (30)

Come si vedrà più avanti, la “scoperta” dell’agricoltura, con la possibilità di discriminare tra piante spontanee e piante coltivate, piante alimentari e piante medicinali, permette la individuazione di soggetti esperti e di conoscenze segrete, limitate agli esperti, esoteriche.

La conquista del mondo
I movimenti migratori che hanno portato H. sapiens a conquistare il mondo sono conosciuti nelle loro linee più generali.

Nell’arco temporale del “grande balzo in avanti”, dopo la conquista dell’Eurasia meridionale, H. sapiens arriva in Australia e Nuova Guinea (unite al tempo a causa della glaciazione) tra i 30.000 e i 40.000 anni fa (iniziando l’estinzione della megafauna australasiana), con quello che è stato probabilmente il primo utilizzo di imbarcazioni per superare grandi distanze (intorno agli 80 km). Circa 20.000 anni fa l’uomo conquista le terre fredde della Siberia, probabilmente contribuendo all’estinzione del Mammut e del rinoceronte lanoso. E’ probabile che solo le maggiori capacità di H. sapiens rispetto ad H. erectus e H. neanderthalensis abbiano permesso questo passaggio.

L’ultima grande massa continentale ad essere conquistata è stata l’America. Approfittando di favorevoli condizioni climatiche, è probabile che intorno a 12-000 anni fa i primi coloni siano arrivati in Alaska, e che nel giro di mille anni queste popolazioni siano arrivate in Patagonia. La Groenlandia dovrà aspettare il 2000 a.C. (31)

Se la parte principale della dieta di Homo sapiens arcaico era costituita dai vegetali (lo indicherebbero le strie dei denti comparabili a quelle dei vegetariani contemporanei, i cestini per la raccolta di vegetali nel tardo Paleolitico, i fitoliti indicanti uso di cereali, il rapporto Stronzio/Calcio delle ossa che si innalza nel Mesolitico), con il passare del tempo egli diviene sempre più attivo nel procacciarsi la carne, passando da scavenger passivo a scavenger attivo e cacciatore, e gli strumenti, specie quelli utilizzati per la macellazione delle carcasse animali, si fanno più sofisticati a mano a mano che cresce la competizione con i grossi carnivori.

Certamente l’utilizzo più massiccio della carne come alimento energetico facilita l’apporto di principi nutritivi atti a sostenere l’encefalizzazione e quindi l’ominazione.

A questo periodo risalgono altri importanti ritrovamenti di indizi sull’uso delle piante da parte dell’uomo. I resti trovati nei siti Neolitici degli abitanti dei laghi dell’Europa centrale indicano coltivazione o raccolta di ca. 200 specie diverse di piante (ad es. papavero da oppio, Papaverum somniferum L. — Papaveraceae).

Il maggior consumo di cibi ad elevata densità e d’origine animale ha probabilmente migliorato lo status nutrizionale di Homo sapiens ma ha anche cambiato il suo rapporto con foglie e composti allelopatici, ed è probabile che questi cambiamenti abbiano avuto un effetto sull’equilibrio tra status nutritivo, organismi patogeni e proprietà positive e negative dei composti attivi. Il cambiamento di dieta, infatti, potrebbe aver reso da un lato meno necessario l’utilizzo di foglie (energeticamente povere) e dall’altro aver reso possibile un loro consumo più elevato in caso di necessità (perché un organismo ben nutrito detossifica più facilmente gli xenobiotici, ovvero i composti chimici farmacologicamente attivi esogeni introdotti con la dieta).

Forse è qui, con lo sganciamento parziale dell’uomo dalla necessità di ingerire piante tossiche, e con l’inizio del lungo processo che avrebbe portato alla domesticazione di alcune piante, che si ha per la prima volta la possibilità di parlare di medicina e non solo di comportamenti di automedicazione. Perché il disaccoppiamento della frazione nutritiva da quella tossica permette di individuare due soggetti fino a questo momento fortemente sovrapposti: le piante alimentari e le piante medicinali, ed è possibile ingerire, coscientemente, composti allelopatici a scopo curativo.

——————————

Note

23. Guegan J-F, Prugnolle F, Thomas F (2008) “Global spatial patterns of infectuous diseases and human evolution”. In S.C. Stearns & J.C. Koella (eds.) Evolution in Health and Disease. Second Edition. Oxford University Press

24. Kiple K.F. “The ecology of disease”. in W.F. Bynum e R. Porter 1993 op. cit. pp. 357-381. Anche se la presenza di asce e coltelli di pietra e di segni da taglio sui denti indicano un utilizzo di carne, le strie sui denti e la loro qualità estremamente simile a quelle dei vegetariani odierni indica una dieta prevalentemente vegetariana (Consiglio e Siani 2003 op. cit. )

25. In mancanza di dati archeologici, la fonte più importante di inferenze sul passato sono le condizioni di vita odierne delle ultime popolazioni di cacciatori raccoglitori; essi sono ben nutriti rispetto ai vicini coltivatori, e di solito in salute (Vickers W.T. “The health significance of wild plants for the Siona and Secoya”. In Etkin, N.L. (Ed.), 1994 op. cit. pp. 143-165), ed i loro problemi parassitari ed infettivi sono probabilmente in equilibrio con la popolazione (Kiple 1993 op. cit. ).

26. Ma, come hanno mostrato Mackinnon MJ, Mwangi TW, Snow RW, Marsh K, Williams TN (2005) “Heritability of malaria in Africa”. PLoS Med 2(12): e340,  i fattori genetici dell’ospite sembrano contare per il 25-33% della variabilità totale nella suscettibilità, e solo una piccola percentuale di questa variazione sembra legata ai geni più conosciuti e studiati, rafforzando l’ipotesi che la suscettibilità alla malaria sia sotto il controllo di molti geni differenti, e di fattori non genetici sempre predeterminati, che si articolano in maniera complessa con i fattori genetici.

27. Etkin, N (2003) “The co-evolution of people, plants, and parasites: biological and cultural adaptations to malaria”. Proceedings of the Nutrition Society, 62:311-317

28. Diamond 1997 op. cit.

29.  Johns 1990 op. cit.;  Vickers 1994 op. cit. ; Kiple 1993 op. cit.

30. Anche in questo caso ci si rifa ai agli studi effettuati sulle ultime popolazioni di cacciatori raccoglitori, che utilizzano rimedi per molti problemi: ferite, fratture, slogature, dolore, problemi di pelle, febbre, raffreddore, tosse, diarrea, mal di testa, ecc. Le piante venivano e vengono consumate come infusi, forse ancora prima come pianta fresca o secca ingerita tal quale.

31. Diamond 1997 op. cit.

Uomo e piante 3/dimoltialtri

Rieccoci qui alla serie Uomo e piante. Dopo un post introduttivo ed uno che esaminava in breve l’evoluzione delle piante dal punto di vista dei loro composti di difesa, nella terza installazione iniziamo a parlare dell’evoluzione umana in relazione in particolare alla dieta.

I primi passi dell’uomo
E’ fuor di dubbio che l’origine dell’uomo sia da ricercarsi in Africa, e che dall’Africa esso abbia poi colonizzato il resto del mondo. (5)

I dati genetici e paleontologici indicano infatti che l’antenato comune a uomini e scimpanzè viveva probabilmente nelle foreste pluviali dell’Africa centrale nutrendosi principalmente di frutta, più raramente di altre parti vegetali ed occasionalmente di carne.

Le prime specie di primati della tribù Hominini comparvero quasi sicuramente in Tanzania ed in Etiopia intorno a 6-7 milioni di anni fa, (6) e le varie specie di australopitecine (divise in “robuste” e “gracili”) si diversificarono intorno ai 4 milioni di anni fa.

Alcune di queste specie (almeno due  delle “robuste”), vissero fino ad essere contemporanee ad Homo habilis, sulla costa orientale africana dall’Etiopia al Sud Africa, in habitat sia di foresta che di savana. La loro alimentazione fu prevalentemente vegetariana, probabilmente dominata dalle foglie, per almeno tre milioni di anni, finché non si estinsero circa un milione di anni fa.(7)

Tra i 3 ed i 2 milioni di anni fa un importante cambiamento climatico e vegetazionale portò ad una progressiva estensione dei territori a savana a scapito della copertura forestale, ad una riduzione nella disponibilità dei frutti molli tipici delle foreste e ad un aumento di legumi e frutti duri, di piante erbacee e della possibilità da parte degli Ominidi di cacciare grandi erbivori.

E’ in questo contesto che si situa la comparsa del primo rappresentante del genere umano, Homo habilis, bipede abile costruttore di utensili ma dalla scatola cranica ancora piccola. Sempre in questo lasso di tempo si situa la iniziale diversificazione di Homo, che corrisponde anche al momento di maggior diversità nel genere, per il momento limitato all’Africa. E’ stato ipotizzato, infatti, che in quel periodo abbiano convissuto in Africa fino a sei specie di Ominidi, comprese tre del genere Homo (H. habilis, H. rudolfensis e H. ergaster).(8)

Il cambiamento climatico e la maggior disponibilità di erbivori di grande taglia determinò probabilmente la dieta maggiormente basata sulla carne di H. abilis (fino al 30%), che però è improbabile fosse un cacciatore attivo, ma piuttosto uno spazzino passivo, dipendente per il suo sostentamento dall’attività dei grandi carnivori come le tigri dai denti a sciabola.(9)

I dati archeologici sulla dieta degli ominidi mostrerebbero che fin da subito Homo divenne il maggior competitore delle australopitecine, a causa della sovrapposizione delle risorse alimentari dei due gruppi, specialmente per quanto riguarda le specie vegetali utilizzate. E’ possibile che in caso di difficoltà nel reperire carne gli Homo si volgessero verso cibi di riserva vegetali, entrando in forte competizione con le australopitecine, le quali avrebbero dovuto a loro volta fare affidamento su altre fonti di cibo, facili da reperire o difficili per Homo da sfruttare.

La scomparsa delle forme di Homo di statura ridotta circa 1.6 milioni di anni fa, e l’estinzione delle forme robuste delle australopitecine (dopo l’aumento progressivo delle dimensioni dei loro molari) indicherebbero che queste strategie di utilizzo degli alimenti di riserva non potevano essere mantenute facilmente di fronte ad una aumentata efficacia come cacciatori degli Homo di grandi dimensioni. (10)

E’ possibile ipotizzare che fin da questo periodo le piante ed i metaboliti contenuti in esse abbiano giocato un ruolo nell’evoluzione degli Ominidi. Secondo alcuni ricercatori il cambiamento climatico avrebbe forzato i primati, ed in particolare le femmine, ad adattarsi ad un ambiente caratterizzato da momenti di abbondanza e da altri di relativa carestia, e da un aumentato carico di metaboliti secondari.

Parte dell’adattamento potrebbe essere stato la maggior facilità di stoccare il surplus di energia sotto forma di depositi adiposi da sfruttare nei momenti di bisogno, una caratteristica che distingue nettamente gli esseri umani dagli altri primati, a parte l’orangutang, il quale vive anch’esso passaggi drammatici da abbondanza a carestia nelle foreste del Borneo.

Un altro adattamento fu forse la ricerca di nuove fonti di cibo meno tossiche e più diversificate. Secondo alcuni autori questi cambiamenti potrebbero aver segnato uno dei passaggi critici nell’evoluzione degli Homo.(11) Nuove strategie alimentari che permettessero un flusso di nutrienti più continuo durante l’anno, e l’aumentata capacità di stoccaggio potrebbero essere stati critici per l’evoluzione del cervello per almeno due ragioni strettamente collegate: la prima è che la strategia di ricerca allargata a nuovi habitat e verso molteplici fonti di cibo necessita di un cervello più plastico, potente e quindi più grande di quello di un animale che usi poche fonti di cibo; la seconda che un cervello più grande è metabolicamente molto costoso da produrre nella gestazione e da mantenere  durante la vita extrauterina, ed ha bisogno di fonti stabili di energia.(12)

E’ possibile che l’abilità di stoccare energia in maniera più efficiente, nata per rispondere ai momenti di carestia, abbia funzionato, una volta che lo sfruttamento di nuovi habitat avesse permesso un flusso di nutrienti stabile nel tempo, da esaptazione (o preadattamento) per l’abilità delle femmine di gestire la maggior crescita cerebrale del feto durante la gravidanza rispetto ad altri mammiferi, condizione che è stata definita come uno stato di “carestia accelerata” per la donna. (13)

Secondo le teorie delle migrazioni umane che hanno più supporto empirico, (14) le popolazioni originali di H. ergaster (H. erectus africanus – la specie che seguì a Homo habilis), dalle loro probabili zone di origine nella Rift Valley, si sarebbero espanse in una prima ondata prima, tra 1,5 e 1.2 milioni di anni fa, nel continente africano verso sud (Pigmei e Khoisan), verso ovest (odierni Niger e Congo) e nord, passando poi in Asia attraverso la penisola del Sinai circa 1.2 milioni di anni fa e da lì in Europa 500.000 anni fa, dove si sarebbero insediate ed evolute fino a dare origine ad una nuova specie, Homo neanderthalensis, che aveva con tutta probabilità una dieta del tutto simile a Homo erectus, ovvero fortemente carnea, in particolare a base di erbivori.(15)

Mentre in Europa faceva la sua comparsa il Neandertal, in Africa, da una piccola popolazione geograficamente separata dallo stock di H. erectus africano (H. ergaster), si sarebbe originato, meno di 200.000 anni fa, il primo nucleo di Homo sapiens (H. sapiens arcaico), che avrebbe poi iniziato a migrare verso le zone già occupate da H. erectus e H. neanderthalensis ca. 100.000 anni fa.(16)

E’ quindi ipotizzabile che tra i 50 ed i 35.000 anni fa tre specie di Homo convivessero sulla terra: H. neanderthalensis come discendente di Homo erectus in Europa, Homo erectus in Asia, e Homo sapiens nel suo continuo movimento espansionistico dall’Africa al resto del globo. Secondo la stessa logica è ipotizzabile che H. sapiens e H. neanderthalensis abbiano condiviso i territori in Europa, e forse che si siano mescolati.(17)

La dieta

Un passaggio decisivo per l’evoluzione della dieta degli ominidi fu certamente l’utilizzo del fuoco per la cottura del cibo, che con tutta probabilità appare come attività intorno a 400.000 anni fa. La cottura presentava indubbiamente dei grandi vantaggi per gli ominidi: essa infatti trasforma alcuni cibi prima indigeribili in cibi commestibili; facilita l’utilizzo dell’energia contenuta nei cibi riducendo il dispendio energetico digestivo; riduce il consumo dei denti. Inoltre un recente studio mostra che con tutta probabilità gli ominidi avevano già sviluppato una preferenza per i cibi cotti, preferenza forse spiegabile con la somiglianza tra i segnali molecolari provenienti dal cibo cotto e i segnali molecolari che aiutano l’ominide a distinguere tra cibi “buoni” e cibi “cattivi”.(18)

L’utilizzo del fuoco potrebbe aver facilitato i raccoglitori africani del Pleistocene nello sfruttamento di radici, tuberi e noci, che secondo la received view erano le risorse vegetali più importanti di Homo intorno a 100.000 anni fa, anche se l’ipotesi che la raccolta dei cereali in Africa fosse tecnicamente troppo difficile e quindi irrilevante rispetto alla raccolta delle radici, viene messa in discussione dai recenti dati provenienti dagli scavi nella caverna di Ngalue (odierno Monzambico).
Gli scavi mostrano una presenza importante di grani di amido di sorgo ed altre erbacee, suggerendo che almeno 105.000 anni fa Homo sapiens raccogliesse i semi delle graminacee per la sua sussistenza. (19)  Questa conclusione sembrerebbe supportata dallo studio sugli strumenti del sito di Kanjera in Kenya, che mostrerebbero segni inequivocabili di utilizzo per la processazione di piante erbacee (oltre che per l’apertura di noci, la pulitura di radici e il disossamento di carcasse di animali).(20)

Si situa in questo contesto temporale la prima testimonianza a noi pervenuta dell’utilizzo di piante medicinali da parte dell’uomo (di Neandertal, in questo caso). In una tomba risalente al 60.000 a.C., presso il sito archeologico Shanidar IV (in Iraq), sono stati ritrovati pollini raggruppati in maniera tale da suggerire che le piante dalle quali provenivano formassero un tappeto per il corpo del deceduto. Nonostante sia impossibile essere certi che fossero piante usate a scopo medicinale, o comunque importanti per la cultura di Shanidar IV, la maggior parte degli autori concorda con questa ipotesi. Le piante sono state identificate come appartenenti ai generi Achillea sp. [Asteraceae], Althaea sp. [Malvaceae], Muscari sp. [Liliaceae/Hyacinthaceae], Senecio sp. [Asteraceae], e alle specie Centaurea solstitialis L. [Asteraceae] ed Ephedra altissima [Ephedraceae], piante tuttora importanti nella fitoterapia irachena e presenti in altre tradizioni mediche.(21)

Muscari armeniacum

Centaurea sostitialis

Ephedra altissima

Il grande balzo

Proprio la presenza contemporanea dell’uomo di Neandertal e dei primi esemplari di Homo sapiens (Cro-Magnon) tra i 50.000 e i 35.00 anni fa in Europa coincise con due grandi eventi, uno di tipo culturale ed uno di tipo climatico.  Circa 50.000 anni fa si ha testimonianza, in Asia orientale prima e di seguito nel Vicino Oriente ed in Europa sud orientale, di un periodo di grande progresso tecnologico e comportamentale (la cosiddetta “rivoluzione umana” o “il grande balzo in avanti”).

Cambiamenti paragonabili sono avvenuti all’incirca nel periodo dell’arrivo degli Homo moderni in Europa, 40.000 anni fa, testimoniati tra e altre cose dai graffiti della grotta di Lascaux, nell’odierna Francia. In effetti in questo periodo (Paleolitico superiore) si osserva un avanzamento nella complessità tecnologica, artistica e rituale molto maggiore di quanto osservato nei periodi precedenti, come ad esempio l’uso di strumenti a lama specializzati, l’apparire dell’arte, del simbolismo, la comparsa di siti di sepoltura umana accompagnati da ornamenti complessi in osso, corno, conchiglie o oggetti d’avorio.(22)

Nello stesso periodo ci fu l’inizio delle grandi instabilità e fluttuazioni del clima dell’era glaciale, con il passaggio da climi temperati a climi estremamente rigidi e viceversa, e questi mutamenti continuarono a verificarsi alternativamente a distanza di poche migliaia di anni. In Europa questi cambiamento erano legati all’inversione della circolazione oceanica nel Nord Atlantico e potevano congelare e scongelare l’Atlantico in meno di una decade. Quindi è del tutto possibile che nell’arco della vita di un Neandertal e di un Cro-Magnon, il clima e l’ambiente animale e vegetale a cui erano abituati fosse spazzato via e sostituito da climi, specie animali e vegetali del tutto nuovi. Quando le colonie di Cro-Magnon iniziarono a convivere con i Neandertaliani, il cambiamento climatico potrebbe aver favorito i primi, che forse avevano dei vantaggi quali una rete sociale più ampia e solida, abiti e ripari più efficienti, e alla fine ciò potrebbe aver portato alla scomparsa dei Neandertal.

—————————————————————————–
Note

1. Tattersall I., Schwartz J. Extinct humans. Boulder CO; Westview Press, 2000; Johanson D., Edgar B. From Lucy to language. NY; Simon & Schuster, 1996.

2. Crowe, I (2005) “The Hunter-Gatherers”, in G. Price (ed.) The Cultural History of Plants. Routledge, New York, pp. 3-11

3. Crowe 2005 op. cit.

4. Secondo Tutin (Tutin C (1992) “Foraging profiles of sympatric lowland gorillas and chimpanzees on the Lopé game reserve, Gabon”. In E.M. Widdowson and A. Whiten (eds.) Foraging Strategies and Natural Diet of Monkeys, Apes and Humans. Oxford, Clarendon Press) è probabile che la frugivoria sia stato il primo stadio di adattamento (anche primati oggi tipicamente foliovori (come i gorilla) sarebbero comunque passati dallo stadio di frugivoria), ed il più plastico. La foliovoria sarebbe infatti in cul-de-sac evolutivo che costringe l’animale a sviluppare una flora batterica gastrica o intestinale per fermentare le fibre delle foglie e renderle assorbibili. Una volta sviluppata tale flora l’animale sarebbe comunque costretto ad alimentarsi in parte con foglie anche in periodi di abbondanza di frutti, solo per mantenere attiva la flora.

5. Diamond, J. Guns, germs, and steel: The fates of human societies. W.W. Norton & Co., 1997; Ed. italiana Armi, acciaio e malattie: breve storia del mondo negli ultimi tredicimila anni. Torino, Einaudi 2000; Dawkins R. Il racconto dell’antenato. La grande storia dell’evoluzione. Mondadori, Milano, 2006; Filler A.G. (2007) “Homeotic evolution in the Mammalia: Diversification of therian axial seriation and the morphogenetic basis of human origins”. PLoS ONE 2(10): e1019. doi:10.1371/journal.pone.0001019

6. I resti di Sahelanthropus tchadensis e poi di Orrorin tugenensis si situano intorno a quell’area temporale, e poco più tardi appaiono i primi resti di Ardipithecus ramidus (5.8 milioni di anni fa) e di Kenyanthropus platyops (3.5 milioni di anni fa).

7. Gli australopitecini, differenziati in molte specie, spesso contemporanee, comprendevano almeno tre di tipo “robusto (Australopithecus aethiopicus – 2.6-2.3 milioni di anni fa; A. robustus – 2-1.5 milioni di anni fa; A. boisei – 2.1-1.1 milioni di anni fa). e tre più “gracili” (A. anamensis (4.2-3.9 milioni di anni fa), A. afariensis (3.9-3.0 milioni di anni fa), A. africanus (3-2 milioni di anni fa). Gli australopitecini robusti (per i quali alcuni autori usano ora il termine Parantrhopus perché ritengono che appartengano ad un clade unico) molto probabilmente non sono diretti antenati dell’uomo moderno, ma appartengono ad un ramo laterale del cespuglio evolutivo. Quelli più “gracili” sono invece probabilmente i nostri progenitori diretti (Gould, S.J. The structure of evolutionary theory. Belknap Press, 2002).  Rispetto agli ominidi che li avevano preceduti gli australopitecini in genere mostravano una dentatura più adatta ai cibi duri, per i quali era necessario passare da funzioni di taglio ed affettatura (tipiche dei cibi morbidi) a schiacciamento e triturazione, e ad una masticazione circolare. I denti erano situati sotto e non davanti al cranio (con riduzione quindi del prognatismo, una riduzione che si è mantenuta sino a noi), canini ridotti e cuspidi arrotondate e basse. D’altro canto secondo alcuni autori la presenza di incisivi piccoli sarebbe più indicativa di foliovorìa che di frugivorìa (Consiglio, C. e Siani V.  Evoluzione e alimentazione: il cammino dell’uomo. Torino: Bollati Boringhieri, 2003). Consiglio e Siani stimano una percentuale dal 2 al 5%), foliovora e/o frugivora. L’ambiente forniva ampie possibilità di alimentarsi con noci (A. africanus usava ciottoli per romperle), bacche e legumi della savana, e foglie e frutti carnosi reperibili nella foresta. Più ambigui i dati sui robusti. Gli studi sulla chimica delle ossa effettuati sui fossili sono compatibili sia con una dieta prevalentemente foliovora sia con una ricca in radici e carne. La dentatura indica che erano più adatti dei gracili a mangiare cibi duri (sia che ne mangiassero maggiori quantità, sia che il cibo fosse più duro). Secondo Consiglio e Siani 2003 op. cit.  A. robustus e A. boisei potevano usare frutti di alberi della savana come Parinari excelsa, P. curattellifolia, Sclerocarya birdea, Ricinodendron rataneeni.  Da questi dati si presume una dieta prevalentemente vegetariana, foliovora e adatta a semi duri tipici delle piante della savana.

8. Gould 2002 op. cit.

9. La carnivoria sembrerebbe comprovata da vari dati, come la riduzione dello smalto dei denti, i cumuli di ossa ritrovate nei siti abitativi, i segni di arnesi da taglio su denti e sulle ossa, e le tracce indicative di alimentazione a base di pesce. E’ ipotizzabile che si fosse creata una nuova nicchia ecologica per H. abilis come spazzino delle carcasse lasciate dai carnivori meno specializzati, come la tigre dai denti a sciabola del Pliocene e Pleistocene. Può darsi che esso fosse principalmente uno spazzino passivo che si nutriva delle ossa e del loro midollo, battendo sul tempo i carnivori specializzati nell’utilizzo delle ossa. Comunque sia, la dieta conteneva carne come componente importante, ma certamente non maggioritaria (si valuta intorno al 30%). Con la scomparsa delle tigri dai denti a sciabola dall’Africa (1.7 milioni di anni fa) H. habilis ha con tutta probabilità dovuto diventare uno spazzino più attivo, che doveva competere con spazzini molto più specializzati ai quali doveva contendere i resti; alcuni autori hanno collegato questo cambiamento di modalità con l’aumento di statura che si nota nel passaggio tra H. habils e H. erectus (i cui fossili africani sono stati chiamati Homo ergaster).

10. cfr. Wood and Lieberman 2001 e Ungar PS, Grine FE, Teaford MF (2008) “Dental Microwear and Diet of the Plio-Pleistocene Hominin Paranthropus boisei“. PLoS ONE 3(4): e2044

11. Mancando, come sempre in questo caso, prove dirette di quando sia accaduto, dobbiamo avvalerci sono di dati indiretti, di inferenze. Uno studio sui lemuri del Madagascar (L. cattia) (Sauther M.L. “Wild plant use by pregnant and lactating ringtailed lemurs, with implications for early hominid foraging”. In N.L. Etkin (Ed.) 1994 op. cit. pp. 240-258). I lemuri sono un tipo di proscimmia sociale diurna che abita la foresta fluviale a mosaico del Madagascar, e l’analisi dei suoi comportamenti alimentari può essere utile per intuire alcuni passaggi cruciali che hanno portato alla divergenza dei primi ominidi. Il risultato degli studi suggerisce che un avanzamento critico che ha differenziato i preominidi dalle altre specie di primati sia stato lo sviluppo di comportamenti volti ad aumentare la possibilità di sfruttamento delle risorse ambientali. Dati i cambiamenti climatici, che hanno causato una modificazione dell’ambiente nella direzione di una bioregione di savana-mosaico, gli ominidi africani per avere successo devono avere imparato a sfruttare nuove nicchie ecologiche. Dato che le femmine incinte o che allattano sono comunque soggette, rispetto ai maschi, a maggiori restrizioni alimentari (devono evitare cibi con eccessive quantità di metaboliti tossici) e ad elevati costi (devono spostarsi di più per ricercare il cibo), è ipotizzabile che da loro sia partita la spinta alla ricerca di nuove nicchie, di nuovo strumenti per avere disponibilità di cibo tutto l’anno.

12.  Johns 1990 op. cit.

13. Ellison P.T. On fertile ground: A natural history of human reproduction. Harvard University Press, Cambridge, USA, 2001, pp. 289-294

14. Il modello della “origine africana recente” o “della sostituzione”. Cfr. White T.D., Asfaw B., DeGusta D., Gilbert H., Richards G.D., Suwa G. et al. (2003) “Pleistocene Homo sapiens from Middle Awash, Ethiopia”. Nature, 423:742-7; Stringer C.B. (2003) “Out of Ethiopia” Nature, 423:692-4; Stringer, C. (2001) “The evolution of modern humans: where are we now?” General Anthropology 7 (2): 1-5

15. I dati sulla riduzione dello smalto e della area masticatoria, i segni di coltello su ossa e denti, la presenza di strumenti da taglio come asce e coltelli di pietra, sono consistenti con un aumento della quantità di carne nella dieta di H. erectus, e che forse fosse passato ad un ruolo di scavenger più attivo (statura più elevata). La carne era quindi probabilmente una componente importante, secondo Consiglio e Siani 2003 op. cit. da situarsi in media intorno al 30% e non più del 50%. La dieta delle popolazioni insediatesi vicino a laghi, mari e corsi d’acqua era anche molto ricca in pesce. Gli scavi presso il sito di Gesher Benot Ya’aqov, sulle rive del paleo-lago Hula nel nord della Valle del Giordano, nel Rift del Mar Morto, risalgono a 790.000 anni fa, e indicano che la popolazione faceva ampio utilizzo di granchi e soprattutto pesce. Gli stessi scavi hanno consentito di verificare quali piante venissero utilizzate ed in parte anche a che scopo. Tra le piante usate a scopo non alimentare troviamo olivo, quercia, Styrax officinalis, mentre tra quelle alimentari figurano le ghiande di quercia (detossificate probabilmente tramite cottura e forse geofagia), i semi della Euryale ferox e soprattutto i frutti della Trapa natans, molto nutrienti grazie alla percentuale di amido in essi contenuta. E’ possibile che fossero consumati anche i frutti della vite selvatica (Vitis sylvestris) e dell’olivo, come anche le foglie della rapa bianca (Beta vulgaris) e del cardo mariano (Silybum marianum) (Alperson-Afil N, Sharon G, Kislev M, Melamed Y, Zohar I, Ashkenazi S, Rabinovich R, Biton R, Werker E, Hartman G, Feibel C, Goren-Inbar N. (2009) “Spatial Organization of Hominin Activities at Gesher Benot Ya’aqov, Israel”. Science 326:1677-1680)

16. Secondo una teoria alternativa, il modello multiregionale (o modello a candelabro), le tre sottopopolazioni di H. erectus migrate in Africa, Asia ed Europa si sarebbero evolute parallelamente ed indipendentemente per dare origine a Homo sapiens in tutta la sua diversità.  Stringer 2003 op. cit. propone una teoria ancora differente, secondo la quale vi sono stati vari eventi di dispersione nell’evoluzione umana negli ultimi due milioni di anni uno, particolarmente importante, sarebbe avvenuto nel Pleistocene Medio di Africa ed Europa, più di 600.000 anni fa, con l’origine e la dispersione di Homo heidelbergensis. Secondo Stringer 2003 op. cit. questa specie vide di seguito un graduale evento di speciazione circa 300.000 anni fa, dando origine a Homo sapiens neanderthalensis (o H. neandertalensis – Neandertal) al nord del Mediterraneo ed a Homo sapiens arcaico al sud, in Africa. Nel frattempo ad est continuava l’evoluzione di Homo erectus, in Cina e Giava. Queste due linee evolutive possono esseresi incontrate in aree di sovrapposizione, come ad esempio in Medio Oriente, circa 100.000 anni fa, ed in Europa 35.000 anni fa.

17. Altri autori ipotizzano modelli misti, nei quali la componente della seconda ondata migratoria si sia ibridata in parte con alcune spp. della prima ondata, come Homo neanderthalensis, cfr. Duarte C., Mauricio J., Pettitt P.B., Souto P., Trinkaus E., van der Plicht H. et al. (1999) “The early upper Paleolithic human skeleton from the Abrigo do Lagar Velho (Portugal) and modern human emergence in Iberna”. Proceedings of the National Academy of Sciences, USA, 96:7604-9.

18. Wobber V, Hare B, Wrangham R. (2008) “Great apes prefer cooked food”. J Hum Evol 55:340-348

19. Mercader J. (2009) “Mozambican grass seed consumption during the Middle Stone Age”. Science 326:1680-1683).
20. Braun DR, Plummer T, Ditchfield P, Ferraro JV, Maina D, Bishop LC, Potts R. (2008) “Oldowan behavior and raw material transport: perspectives from the Kanjera Formation”. J Archaeol Sci 35:2329-2345

21. Lietava, J. 1992 “Medicinal plants in a Middle Paleolithic grave. Shanidar IV” Journal of Ethnopharmacology 35:263-266; Leroi-Gourhan A. (1975) “The flower found with Shaidar IV, a Neandrethal burial in Iraq”. Science. 190:562-564; Solecki R.S. (1975) “Shanidar IV, a Neanderthal flower burial in Northen Iraq”. Science. 190:880-881. Per una opinione contraria sul ruolo delle piante nei riti di sepoltura di Shanidar IV, cfr, Sommer J.D. (1999) “The Shanidar IV ‘flower burial’: a re-evaluation of Neanderthal burial ritual”. Cambridge Archeological Journal 9(1):127-137

22. Diamond 1997 op. cit.

Uomo e piante 2/dimoltialtri

Continua questa serie di post sul rapporto uomo e piante nella storia. Ci eravamo lasciati qui con la promessa di dare un’occhiata più da vicino all’evoluzione delle piante e dei loro metaboliti secondari, e poi all’evoluzione dell’uomo, come preambolo prima di mescolare il tutto nel calderone :-).

Quindi eccoci qui a parlare de…

L’evoluzione delle piante – una breve descrizione
La vita ebbe inizio nelle acque. E fu vita autotrofa, pacifica, a bassa diversità. La nascita dei primi predatori fu la causa iniziale di una esplosione evolutiva che ci ha portato ai giorni nostri.

L’azione predatoria fece da stimolo ad una diversificazione degli autotrofi verso nuove nicchie ecologiche, nuovi modi di vivere negli oceani e nuove strategie per sfuggire ad una minaccia nuova. Questa diversificazione, accompagnata da una diversificazione parallela nei predatori, portò in tempi geologicamente brevi alla saturazione delle nicchie oceaniche, e quindi al tentativo di conquistare un habitat fino ad allora vergine, le terre emerse.

Ma questa conquista richiedeva modificazioni qualitativamente molto diverse rispetto a quelle precedenti: bisognava in qualche modo rendersi autonomi dall’acqua, e l’evoluzione successiva è tutta percorsa da questo tema, l’interiorizzazione dell’oceano. Ma perché questa storia potesse avere inizio erano necessarie certe condizioni di partenza, senza le quali la vita come la conosciamo non sarebbe stata in grado di conquistare i nuovi territori; esse erano: la presenza di stabili ambienti costieri, la formazione del suolo e lo sviluppo di condizioni climatiche ed atmosferiche adatte.

Colonizzazione
Le condizioni per la colonizzazione delle terre emerse da parte delle piante si presentarono nel tardo Ordoviciano, circa 458-443 milioni di anni fa. Ma le prime evidenze fossili del fatto che le piante acquatiche avessero effettivamente sviluppato delle caratteristiche compatibili con un ambiente non acquoso si situano nel primo Siluriano (ca. 470-430 milioni di anni fa). Nei fossili di questo periodo si riscontrano misure per la protezione dal disseccamento, le prime cellule specializzate per il trasporto di acqua e nutrienti, le prime strutture di supporto meccanico e modalità riproduttive che non dipendono principalmente da acqua esterna.

Le inferenze da dati scarsi sono sempre rischiose, ma sembra possibile dire che nel tardo Siluriano – primo Devoniano (ca. 430-400 Ma) dalle alghe verdi emersero le prime piante terrestri, che comprendevano piante non-vascolari (le Briofite), piante vascolari (Tracheofite) e piante con caratteristiche miste. Probabilmente le primissime piante terrestri a comparire furono quelle non vascolari, in particolare le Epatiche, seguite dai muschi, forse i più vicini, evolutivamente, alle piante vascolari.(1)

Ma torniamo alla nostra storia di colonizzazione.

Intorno al primo Devoniano (ca. 408 milioni di anni fa) avviene il primo passaggio evolutivo rivoluzionario: compaiono le prime piante vascolari, ed intorno ai 400 milioni di anni fa compaiono le Eutracheofite, il gruppo tassonomico che comprende quasi il 99% delle piante moderne. Quindi possiamo dire che molte delle caratteristiche della nostra flora si stabilirono 400 milioni di anni addietro.

Queste prime piante terrestri erano felci, licopodi e code cavalline, piccole erbacee alte al massimo un metro, che nel giro di circa 100 milioni di anni avrebbero formato completi ecosistemi forestali con alberi alti fino a 35 metri e simili alle nostre foreste attuali anche se, a vederle ora, queste foreste primordiali ci apparirebbero forse aliene.

Questa profonda e rapida trasformazione non fu dovuta soltanto a modificazioni adattive delle piante rispondenti a fattori biotici, ma anche a grandissimi cambiamenti climatici e tettonici, che compresero lo spostamento del polo Sud, tre glaciazioni e una forte riduzione dell’anidride carbonica dell’atmosfera.

Le piante svilupparono meccanismi sempre più complessi, “inventarono” radici, cortecce, foglie, legno e una vascolatura più efficiente: fino alla comparsa, circa 380 milioni di anni fa, delle prime forme arboree; e già intorno al primo Carbonifero, 350 milioni di anni fa, esistevano foreste di equiseti, licopodi, felci e pro-gimnosperme.

Ma la vera rivoluzione era ancora da venire. Tra i 290 e i 249 milioni di anni fa (Permiano), in corrispondenza di un cambiamento climatico caratterizzato da un graduale e continuo riscaldamento ed inaridimento, ed in seguito alla formazione del supercontinente Pangea (ca. 300 milioni di anni fa), emergono e si diffondono le prime piante a seme (Spermatofite), che sono piante a seme nudo (Gimnosperme). Il nuovo gruppo di piante comprende le Cycadi, le Ginkgoaceae, le Bennetite e le Pteridofite. Il seme fu una rivoluzione radicale rispetto al metodo a spore adottato da tutte le piante fino a quel momento.

Le spore, per potersi incontrare e fondersi fino a formare un nuovo individuo, avevano bisogno di essere rilasciate in un ambiente fortemente acquoso, dove potessero sopravvivere senza disidratarsi e nuotare l’una verso l’altra per potersi incontrare.

Il seme sciolse questa dipendenza. Infatti le “spore” (polline e ovuli) non vengono più rilasciate nell’ambiente: l’ovulo rimane fisso ed il polline, disperso dal vento, lo raggiunge e lo feconda. Dopo la fecondazione, inizia subito a svilupparsi il nuovo individuo, ma lo sviluppo si ferma subito e la protopiantina (l’embrione) rimane racchiusa in un ambiente ricco di acqua e nutrienti e protetta da una capsula a tempo, solida e e pronta ad aprirsi solo quando incontra le condizioni ambientali adatte: il seme.

E’ chiaro che la pianta a seme è avvantaggiata: può colonizzare ambienti nuovi, aridi, o sopravvivere nelle mutate condizioni ambientali che hanno ridotto l’ambiente tropicale (fino ad allora quasi universale sulla terra) a ridotte fasce. Inoltre arriva sul terreno in vantaggio sulle spore: la piantina è già formata, attende solo le condizioni giuste, e parte quindi in posizione di vantaggio.

Non sorprende, quindi, che, dopo la comparsa delle Conifere nel periodo subito successivo (Triassico ca. 248-206 milioni di anni fa), entro la prima parte del Giurassico (206-180 milioni di anni fa) la vegetazione globale sia ormai dominata da piante a seme ed inizi, almeno in parte, ad assomigliare alla copertura forestale attuale.

La terza grande rivoluzione (dopo le piante vascolari e le piante a seme) è quella delle piante a fiore (o piante a seme nascosto – Angiosperme), che avviene 140 milioni di anni fa, molto tardi dal punto di vista evolutivo (300 milioni di anni dopo le Tracheofite e 220 milioni di anni dopo le Spermatofite), probabilmente a partire dalle Bennettitales e/o Gnetales. La comparsa tardiva è però seguita da una rapida diversificazione a partire da 100 milioni di anni fa, diversificazione che in tempi relativamente brevi (nel Terziario tardo, ca. 65 milioni di anni fa) porta ad una dominanza globale delle Angiosperme.

Il gruppo si diversifica rapidamente sia dal punto di vista dei meccanismi riproduttivi che della morfologia: compaiono prima le dicotiledoni erbaceo-arbustive e di seguito le monocotiledoni e le strutture floreali passano da semplici fiori a simmetria radiale con molte componenti a fiori sempre più asimmetrici, con fusione di parti, fino al raggruppamento di singoli fiori in infiorescenze (come nelle Asteraceae).

L’esplosione dei metaboliti secondari – difesa e riproduzione
L’avvento delle Angiosperme porta ad un’altra rivoluzione che ci interessa molto da vicino. L’esplosione di diversità portata da questo nuovo gruppo non è limitata alle forme o alle modalità di riproduzione. Essa si esplicita anche nella produzione di una panoplia di composti chimici di difesa o di comunicazione. Le piante, come organismi sessili, non possono sfruttare le strategie di attacco e difesa dinamiche proprie degli animali: fuggire o attaccare il nemico. Esse hanno da subito dovuto utilizzare delle difese di tipo statico, per dissuadere i predatori dal mangiarle.

Le prime piante emerse usarono difese di tipo meccanico, sfruttando i meccanismi già esistenti per la costruzione delle strutture di supporto e di trasporto; usarono quindi lignina e altre sostanze per rendersi coriacee e difficili da digerire, spine, ecc.

Ma ben presto il fenomeno della coevoluzione, ovvero la rincorsa di risposte e controrisposte palleggiate tra piante e predatori le costrinse ad adottare difese più sofisticate, ovvero a sintetizzare delle tossine che in virtù della loro azione (dalla repellenza alla velenosità) dovevano in teoria servire per allontanare l’erbivoro, per ucciderlo o per fargli ricordare che era meglio non mangiare quella pianta!

Le prime briofite e gimnosperme iniziarono sviluppando tannini condensati, glicosidi cianogenici, ormoni giovanili ed ecdisoni, ma sono appunto le Angiosperme che arrivano alla più grande diversificazione produttiva, anche in risposta all’escalation messa in atto dai predatori che si adattavano alle nuove molecole (Tabella 1).

Circa 60 milioni di anni fa, con le prime angiosperme legnose, vediamo la proliferazione di metaboliti derivati da un percorso metabolico nato per la produzione di metaboliti primari come gli aminoacidi, il percorso dell’acido shikimico: quindi i primi alcaloidi (classe regina dei metaboliti bioattivi, che tanto ha segnato la storia della farmacia) e gli oli essenziali caratterizzati da fenoli e derivati; i derivati del percorso dell’acetato o misti, come isoflavoni, saponine, glicosidi cardiaci; e isotiocianati, glicosidi cianogenici. Il passaggio alle erbacee portò ad uno spostamento dal percorso dell’acido shichimico a quello dell’acido mevalonico, più duttile e con maggiori potenzialità di diversificazione. Gli oli essenziali si arricchirono in composti terpenici, meno tossici per la pianta, nacquero i lattoni mono e sesquiterpenici, gli alcaloidi steroidei, i flavonoli.

Tabella 1

Taxa

Metaboliti secondari

Gimnosperme/ Briofite Tannini condensati e glicosidi cianogenici, ormoni giovanili ed ecdisoni
Angiosperme

legnose

Alcaloidi isochinolinici ed ellagitannini
Amminoacidi non proteici, isoflavoni, glicosidi cianogenici
Saponine e isotiocianati
Glicosidi cardiaci
Angiosperme erbaceae Lattoni monoterpenici e alcaloidi steroidei
Lattoni sesquiterpenici, flavonoli e alcaloidi pirrolizidinici

Seguendo l’asse evolutivo felci-gimnosperme-angiosperme legnose-angiosperme erbacee si notano, in accordo con la teoria coevolutiva, l’aumento e la diversificazione dei deterrenti, la crescente complessità delle strutture chimiche e, di converso l’adattamento a queste strutture dei predatori più importanti: gli insetti. In effetti è avvenuto che tutte le molecole di difesa conosciute (ad esclusione dei tannini condensati) siano state utilizzate a proprio vantaggio da almeno una specie di insetto.

Uno schema molto importante per descrivere questo tipo di adattamento degli insetti alle tossine è quello dei “tre livelli trofici”. I tre livelli trofici sono quello della pianta che produce la tossina, quello dell’insetto che si adatta e gestisce la tossina (usandola a proprio beneficio), e quello dei parassiti dell’insetto sui quali agisce la tossina (uccidendoli o inibendoli) (Tabella 2).

Tabella 2

Specie vegetale Metabolita e tossicità Specie animale
Asclepiadaceae Glucosidi cardiottivi        (calotropina, pirazina) Farfalla monarca (Danaus plexippus)
Senecio spp.(S.      jacobea e S.     vulgaris) A. pirrolizidinici        (retronecina) Arctia caja e Tyria jacobea
Aristolochia sp. Acido aristolochico Battus archidanus
Cucurbita sp. Cucurbitacina D Diabrotoca balteata
Lotus cornicolatus Gl. cianogenici (linamarina) Zygaena trifolii
Brassica oleracea Glucosinolarti (sinigrina) Pieris brassicae
Plantago lanceolata Iridoidi (aucubina) Euphydryas cynthia
Zamia floridina Cicasina Eumaeus atala
Salix sp. Salicina Chrysomela aenicollis
Cytisus scoparius Alc. chinolizidinici Aphis cytisorum
Omphalea Alc. poliidrossilici Urania fulgens

Secondo questa logica, le specie vegetali evolutivamente più avanzate dovrebbero essere più facilitate delle altre nella lotta contro i predatori. In effetti, nelle ombrellifere (Apiaceae) troviamo che, ordinando le molecole di difesa secondo l’asse temporale-evolutivo, esse si distribuiscono anche secondo l’asse di tossicità e di complessità strutturale: prima le idrossicumarine, poi le furocumarine lineari, e quindi le furocumarine angolari. E in effetti le specie contenenti quest’ultimo tipo di molecola si possono difendere da un numero più elevato di predatori.

Possiamo schematizzare l’andamento dei rapporto tra pianta e predatore in questo modo:

Tabella 3: schema coevolutivo pianta-predatore

Sequenza Pianta Animale
1 Sintesi ed accumulo

tossina 1

Evitato da tutte le specie
2 Sintesi continuata Adattamento di poche specie.
3 Sopravvivenza con

predazione limitata

Tossina 1 diventa attraente per le specie adattate
4 Sopravvivenza con

predazione limitata

Aumentano le specie adattate, aumenta la pressione degli erbivori sulle piante
5 Sintesi ed accumulo

tossina 2

Evitato da tutte le specie
6 Sintesi contemporanea

tossina 1 e 2

Adattamento di poche specie, evitata da molte specie

—————————————————————-

Note
1. Willis KJ, McElwain The evolution of plants. Oxford, Oxford University Press, 2000

Uomo e piante 1/dimoltialtri

Uomo e piante

Devo soccombere alla realtà dei fatti, la sintesi non è nelle mie carte, e i post brevi ed illuminanti nemmeno :-).

Cerco di allora di illudermi con la sistematicità, ma  tendo a soccombere alla tendenza al dettaglio. Ecco quindi che mi ci è voluto un po’ per capire che dovevo pur iniziare a buttare fuori questi post dedicati al rapporto tra uomo e piante, anche se non tutti i link sono a posto ecc.

Spero nella benevolenza di chi leggerà, ed anche nelle loro indicazioni e suggerimenti per il miglioramento di quella che nelle intenzioni sarebbe una lunga serie di post.

Questo è anche un modo per trovare il tempo per rivedere le monografie di Infoerbe a poco a poco, con la scusa di linkarle qui.

Un dato incontrovertibile, ma velato dal tempo trascorso e dalla consuetudine, che serve ad inquadrare la discussione che seguirà, è l’esistenza di una relazione speciale che lega le piante all’uomo dagli albori della cultura umana e da prima ancora. Pochi sono gli aspetti della vita dell’uomo nei quali le piante non abbiano giocato in qualche epoca un ruolo importante, addirittura determinante. Allo stesso tempo le piante, in una sorta di viaggio coevolutivo, sono cambiate con l’uomo, sino a diventare in parte dei costrutti culturali.

Le piante forniscono materiale per costruire edifici, templi, vascelli; resine per impermeabilizzare i vascelli, da bruciare nei templi per onorare gli dei, da mescolare al cibo. Dalle piante si modellano strumenti, oggetti sacri ed artistici, fibre per costruire corde, tessuti da indossare e pigmenti per colorarli e per dipingere la storia dell’uomo. Le piante hanno fornito i primi inebrianti usati nei riti magico-religiosi ed i primi veleni usati nella caccia o nelle ordalie, ed entrano nei miti come “oggetti spirituali”, portatori di relazioni simboliche dell’uomo con il mondo naturale e supernaturale. Alcune piante hanno determinato il corso della storia economica e culturale fino a tempi molto recenti, come nel caso delle spezie e delle vie commerciali che furono aperte per assicurarsi il loro monopolio. (1)

Le piante, per finire, (come verrà ampiamente esposto più avanti) sono state per la maggior parte della storia umana la principale fonte di nutrimento, e la fonte più importante di farmaci in tutte le tradizioni mediche antiche ed in certa misura anche nella medicina moderna.

Per citare alcuni esempi a questo riguardo, nella più antica farmacopea occidentale che ci sia arrivata nella sua interezza, il Περὶ ὕληϛ ἰατρικῆϛ (De Materia Medica) di Pedanio Dioscoride (scritto ca. 50-68 d. C.), l’autore elenca circa 725 rimedi, dei quali più di 600 sono di origine vegetale (82-83%), 35 di origine animale (4.7-4.8%) e 90 sono minerali (12.2-12.4%);(2) nella Naturalis Historia (Storia Naturale) di Plinio il Vecchio, compilato nello stesso periodo o poco dopo, su 1693 sostanze medicamentose menzionate, 1391 (82%) sono sostanze di origine vegetale (delle quali 119 spezie o piante aromatiche), 218 (13%) sono sostanze animali e 84 (5%) sono dei minerali.(3)

Nella farmacopea cinese antica le percentuali sono simili: nello Shennong bencao jing (ca. 100 d. C.) su 365 droghe 246 (68%) sono di origine vegetale (i minerali costituiscono lo 11.5% e gli animali il 18.3%); nella raccolta del 659 d.C., il Hsin hsiu pent’sao, la percentuale di rimedi vegetali è del 64% e nel Takuan pent’sao (del 1108 d.C.) del 67.7%.

Nel Caraka Samhita, uno dei due testi più antichi della tradizione medica ayurvedica, si citano 582 rimedi, dei quali 341 (ca. 60%) di origine vegetale.(4)

Per quanto riguarda la farmacopea moderna, secondo Guerci e Lugli: “in un laboratorio farmaceutico medio oltre il 60% dei farmaci provengono, direttamente o indirettamente, dalle piante” e “un quarto delle prescrizioni rilasciate negli stati uniti d’America contiene principi attivi estratti da piante” (per una descrizione più dettagliata ed esaustiva del rapporto tra farmaci prodotti e farmaci legati in maniera più o meno diretta al mondo vegetale vedi il post di Meristemi).(5)

Alcuni di questi farmaci sono tra i più conosciuti ed utilizzati: morfina dal papavero da oppio [Papaver somniferum L. — Papaveraceae], chinino da Cinchona spp. [Rubiaceae], aspirina dalla corteccia di salice [Salix spp. — Salicaceae] e dalla regina dei prati [Filipendula ulmaria (L.) Maxim. — Rosaceae], digossina dalla digitale [Digitalis purpurea L. — Scrophulariaceae], taxolo dal tasso [Taxus brevifolia Nutt. — Taxaceae], vinblastina da Vinca [Catharanthus roseus (L.) G.Don f. — Apocinaceae].

Cibo, farmaco, uomo
Nelle società industrializzate la percezione comune individua i farmaci sia dalla loro forma (pillole o compresse, composti chimici assunti a dosi molto ridotte, nell’ordine dei micro/milligrammi), sia dalla loro funzione (hanno attività farmacologica spiccata, riducono o eliminano sintomi, curano malattie), mentre i cibi sono sostanze consumate solitamente in quantità molto maggiori e che normalmente non esercitano attività farmacologica ai dosaggi tipici dei farmaci, e neppure a quelli alimentari.

In pratica, però, nonostante l’apparenza, la distinzione tra ciò che è farmaco e ciò che è alimento non è così netta, anzi offre molti spazi di sovrapposizione, e le definizioni sono spesso normative e culturali oltre che oggettive. Le piante in particolare possono offrirci vari esempi

Le piante possono infatti essere usate sia come medicina sia come cibo, ed è difficile tracciare una separazione netta tra queste due aree: il cibo può essere medicina e viceversa. Le risorse vegetali nelle società tradizionali, in particolare le verdure selvatiche, sono spesso utilizzate contemporaneamente in diversi contesti come cibo e come medicina. La raccolta o la coltivazione, la preparazione ed il consumo di tali specie sono radicate nelle percezioni emiche (NdT: riferite al punto di vista, alle credenze, ai valori dell’attore sociale ottica) degli ambienti naturali associati alle risorse disponibili, alla cucina e alla pratica medica locale, all’apprezzamento del gusto e tradizioni culturali.(6)

Un esempio classico di questa ambiguità sono le spezie, che costituiscono un gruppo di piante anche oggi utilizzato a scopo alimentare, sempre in quantità molto ridotte; esse sono state tra le prime piante non strettamente alimentari ad essere coltivate (come ad esempio zenzero [Zingiber officinale Willd. Roscoe — Zingiberaceae] e canna da zucchero [Saccharum officinarum L. — Poaceae ], tra le prime cultivar conosciute) e tra le prime ad essere riconosciute dall’uomo come medicinali (dato suffragato dalle moderne ricerche farmacologiche – antisettica, digestiva, antispasmodica ed altre estremamente interessanti).

Tra le spezie meritano una menzione particolare due piante, l’aglio [Allium sativum L. — Alliaceae] e la curcuma [Curcuma longa L.– Zigiberaceae], perché sono due piante che nei loro rispettivi contesti geografici sono piante alimentari comunissime ed allo stesso tempo con una decisa attività di prevenzione e di trattamento delle malattie.(7)

Il caffè [Coffea arabica L.– Rubiaceae]ed il tè [Camellia sinensis (L.) Kuntze — Theaceae] sono due altri esempi tipici di piante con riconosciuta e potente attività farmacologica a dosi relativamente ridotte e che, nonostante ciò, sono, per ragioni di consuetudine e storiche, considerate degli alimenti. Questa difficoltà a distinguere tra i due campi è resa ancora maggiore (o forse è resa più esplicita (8)) dallo sviluppo della zona chiaroscurale che comprende i supplementi alimentari a scopo salutistico, i nutraceutici, gli alimenti funzionali, i cibi tossici o medicinali. (9)

Se passiamo dalle società industrializzate a realtà tribali o di comunità più ridotte e agricolo-pastorali, questa sovrapposizione tra cibo e farmaco non solo è presente, ma è comunemente accettata. Alcuni dei casi più studiati (in particolare da Timothy Johns e collaboratori) sono quelli dei Maasai, dei Batemi e di altre tribù dell’Africa Orientale, che mescolano radici e cortecce ad azione terapeutica alle zuppe a base di carne, ed dei Luo ed altre tribù di Kenya e Tanzania che usano nei pasti, in specifiche celebrazioni annuali, vegetali a foglia larga con attività farmacologia spiccata, molto amare e/o piccanti.

Questo comportamento è stato proposto come spiegazione del cosiddetto paradosso Maasai. Questo gruppo ottiene il 66% delle calorie da lipidi (pasti composti principalmente da latte e sangue), senza mostrare però la costellazione di disordini cardiovascolari che nei paesi europei e nordamericani è associata a diete ad alto tenore di grassi; nelle circa 25 piante usate nelle zuppe è stata riscontrata una elevata percentuale di  saponine, molecole in grado di legarsi al colesterolo ed ai grassi saturi alimentari e quindi potenzialmente in grado di ridurre il rischio (anche se è probabile che la differenza sia dovuta anche a fondamentali differenze di stili di vita tra società industrializzate e società pastorali). Le stesse piante usate come additivi alimentari mostrano attività antivirale contro il morbillo.(10)

In alcuni casi le piante sono un “cibo” ed una “medicina” con forte valenza simbolica: valga per tutti l’esempio del peyote [Lophophora williamsii (Salm-Dyck) J. Coulter — Cactaceae], dio, sacramento, cibo sacro, medicina.(11)

La differenza tra alimento e farmaco può risiedere non nella “natura” del materiale, ma nella modalità di scelta o nell’orizzonte culturale nel quale la scelta viene effettuata. Comunità che condividono caratteristiche simili dal punto di vista socio-economico e geografico, ma culturalmente e/o etnicamente distinte, possono utilizzare la biodiversità vegetale in maniera diversa, usando categorie diverse per determinare  l’interfaccia tra cibo e medicina.(12)

ll sapore, l’apparenza, la consistenza, l’odore, il nutrimento che possono apportare, sono tutti stimoli sensoriali e categorie che determinano la scelta di una pianta come alimento o come medicina, ma nell’equazione entrano anche altri fattori. Alcune piante medicinali, ad esempio, vengono selezionate a seconda della stagione a causa di problemi di disponibilità, quindi in certi periodi dell’anno si sovrapporranno alle piante mangerecce, soprattutto in corrispondenza di malattie stagionali come le malattie da raffreddamento, la malaria, i parassiti, i problemi digestivi. Altre volte, le piante spontanee usate come medicina diventano cibi d’emergenza in momenti di carestia, e sono sovente delle antiche cultivar (sempre più spesso dimenticate anche da quelle popolazioni che si avvantaggerebbero di più dal loro sfruttamento).(13)

Il fatto, poi, che la maggior parte delle piante usate a scopo medicinale non siano piante selvatiche che si incontrano nel profondo della foresta, bensì infestanti, ovvero quelle piante che si situano nel continuum tra selvatico e coltivato, sottolinea  la natura relazionale della polarità alimento-farmaco. La pianta è attiva farmacologicamente in virtù di sue proprietà biologiche, ma viene “costruita” come medicina nella sua relazione con l’attività e la cultura umana, visto che proprio le piante nate “intorno” all’attività agricola dell’uomo senza farne del tutto parte sono diventate il suo strumento medicinale principale. (14)

In sistemi medici colti come la medicina cinese o quella indiana, la sovrapposizione tra cibo e medicina è stata addirittura formalizzata all’interno del costrutto teorico medico. Nel Shennong pent’sao jing, quello che potrebbe essere vista come la prima raccolta sistematica della farmacopea cinese, risalente al primo secolo d.C., i farmaci vengono divisi in tre categorie, dette di grado superiore, medio ed inferiore. Tutte le droghe di livello superiore (chiamate anche rimedi imperatore) appartengono al campo dei cibi-farmaco, rimedi igienisti macrobiotici che “alleggeriscono il corpo”, “estendono gli anni di vita” ed “eliminano la vecchiaia”, dai quali non ci si aspetta una efficacia terapeutica diretta, e la cui somministrazione a lungo termine era considerata sicura, senza pericolo: ginseng [Panax ginseng C. Meyer. — Araliaceae], liquirizia [Glycyrrhiza glabra L. —  Fabaceae], Angelica sinensis [Apiaceae], piantaggine [Plantago spp. — Plantaginaceae] ecc.(15)

Simile classificazione è presente anche nella farmacopea ayurvedica, dove le piante considerate più importanti, i rimedi Rasayana, si usano per nutrire e rinforzare il “tessuto primordiale” o rasa , per ritardare l’invecchiamento, promuovere l’energia vitale e migliorare le capacità cognitive. Anche in questo caso si tratta di piante quasi alimentari, il cui consumo è possibile in grandi quantità e per lungo tempo, e la cui azione è simile ad un nutrimento terapeutico, mentre le piante più attive nel senso moderno e farmacologico del termine sono anche quelle meno importanti [Withania somnifera (L.) Dunal. — Solanaceae; Ocimum sanctum L. — Lamiaceae, Phyllanthus emblica L. — Euphorbiaceae, Asparagus racemosus Willd. — Asparagaceae (o Liliaceae)].(16)

Se poi analizziamo dal punto di vista chimico le piante usate come medicine e quelle di uso alimentare scopriamo che i medesimi composti chimici ad attività farmacologica (alcaloidi, composti amari, flavonoidi, glicosidi, in particolare cianogenici, saponine, acidi organici) sono presenti nelle due categorie, anche se in concentrazioni molto differenti.

Conclusioni
Da quanto detto discende che l’uomo ha sempre inserito nella sua dieta composti farmacologicamente attivi presenti nelle piante di cui si nutriva, anche se probabilmente con maggior frequenza nelle epoche antiche rispetto ad oggi.

Ma come è successo che le piante siano diventate un elemento così importante per gli esseri umani? Ed in particolare, perché esse sono così importanti per la medicina?
Una prima risposta generica a questi quesiti viene dalla considerazione della quantità e diversità di vita vegetale sul globo: grazie alla loro natura autotrofa, le piante superano di una magnitudo di fattore dieci tutta la biomassa di origine animale sul globo; possiedono una capacità ineguagliabile di sintetizzare ex novo composti chimici, poiché, a differenza degli animali, non possono muoversi, e per difendersi dai predatori devono sintetizzare ed utilizzare speciali composti di difesa.

L’approccio coevolutivo spiega la nascita della “pianta medicinale”, il momento aurorale della medicina, come una relazione tra uomo, pianta e patogeni, che nei milioni di anni avrebbe permesso all’uomo di adattarsi ai composti di difesa, di imparare a renderli meno tossici ed infine di utilizzarli a proprio beneficio.

Naturalmente il dato biologico adattivo può spiegare un inizio, può giustificare un ventaglio molto limitato di attività delle piante sull’uomo. Non è possibile farvi risalire direttamente le elaborazioni culturalmente mediate della medicina.(17)

Un corollario di questa tesi è che:

una delle chiavi per comprendere come questo processo sia iniziato sta nel riconoscere l’importanza del sapere tradizionale sulle piante presente in ogni cultura, e nell’identificazione degli elementi culturali e biologici del processo dinamico attraverso il quale questo sapere viene ottenuto e mantenuto in una comunità.(18)

Sarà quindi necessario valutare il ruolo giocato dalle piante all’interno delle diverse culture e dei diversi contesti storici e simbolici, e cercare uno schema che ci permetta di collegare tra di loro questi dati, per chiarire quanto essi siano generalizzabili; per chiarire cioè quanto i parallelismi di utilizzo in diverse aree geografiche dipendano dal passaggio di informazioni tra una area e l’altra  (e non siano quindi trattabili come indipendenti), e quanto invece siano indipendenti e quindi si rinforzino a vicenda.

A loro volta questo collegamenti potranno essere messi in relazione con ciò che sappiamo sulle relazioni evolutive tra uomo e piante, ed anche con ciò che sappiamo in termini di chimica delle piante, ad esempio che esistono dei cluster di attività intorno a determinati composti o gruppi chimici, e che determinati gruppi chimici mostrano la tendenza a segregarsi secondo divisioni tassonomiche.

Questi dati presi assieme e usati, per così dire, per effettuare una triangolazione, potrebbero gettare più luce sulle basi biologiche ed evolutive dell’uso delle piante come medicine da parte dell’uomo.

Prima di tentare questa analisi/descrizione è però necessario fare un passo indietro, esplorare i presupposti biologici di queste relazioni, andare a trovarne i semi nella preistoria della nostra specie o addirittura del nostro genere. Per fare questo esamineremo brevemente quali siano stati i passaggi più importanti nel mondo vegetale dalle sue prime esplorazioni delle terre emerse fino ai nostri tempi, per capire come l’evoluzione delle strategie di sopravvivenza delle piante abbia potuto poi intercalarsi con la nostra. A partire da questi dati sarà poi più semplice esaminare l’evoluzione dell’uomo, della sua dieta e della sua trasformazione nei millenni in pratica terapeutica.

————————————————————————————
Note

1. Lewington A. Plants for People. London, The Natural History Museum, 1990. Heiser, C.B.m, Jr. Of plants and people. Norman OK, University of Oklahoma Press, 1985. Balick, M.J., Cox, PA Plants, people, and culture: The science of ethnobotany. Scientific American Library, 1996

2. Pedacii Dioscoridis de materia medica libri sex interpetre Petro Andrea Matthiolo cum eiusdem commentariis. Venezia, 1544. Collins M.  Medieval herbals: The illustrative tradition. The British Library and University of Toronto Press, 2000

3. Nei libri dal XX al XXXII. In Fabre,  La pharmacopée romaine dans l’oeuvre de Pline l’ancien. Tesi di dottorato presentata alla Sorbona (Paris IV), aprile 1998

4. Il secondo è il Susruta Samhita; di entrambi è incerto il periodo di composizione, anche se la loro presenza è certa nel primo secolo d.C., e è possibile risalgano al quarto secolo a.C. – Wujastyk, D. Indian Medicine in Bynum W.F. e Porter R. Companion encyclopedia of the history of medicine. 2 vols. London, Routledge, 1993, pp.755; cfr. Priyadaranjan Ray e Hirendra Nath Gupta Caraka Samhita (a Scientific synopsis), New Delhi, National Institute of Sciences of India, 1965, Tabelle 1-3

5. Guerci A., Lugli A. Piante medicinali del mondo, patrimonio dell’umanità: Una visione tra etnobotanica, tradizione e scienza. Planta Medica Edizioni, 2005, p. 2 e p.14; cfr. anche Foster, S. & Johnson, R. Desk Reference to Nature’s Medicine. National Geographic Society, Washington D.C, 2006.

6. Pieroni A., & Price L.L. “Introduction” in Eating and Healing: Traditional Food As Medicine, The Haworth Press, 2006

7. D’altro canto possono essere definiti farmaci i cibi assunti per curare o alleviare le malattie, e cibi i beni consumabili che tradizionalmente non sono stati considerati medicinali dai vari governi.

8. Nel senso che l’aumento delle ambiguità in questo campo non è altro, a mio parere, che  la rivelazione della artificialità della distinzione normativa, che ha voluto racchiudere la complessità in definizioni troppo stringenti. In società meno normative, questa sovrapposizione di campi non è vista come problematica.

9. Nel campo ancora giovane ed in grande sviluppo dello studio delle interrelazioni tra “alimenti” e “medicine” i termini usati per descrivere la zona di confine tra i due settori sono ancora relativamente vaghi: per “cibo funzionale” (functional food) si deve intendere, seguendo Preuss (Preuss A (1999) Zur Charakterisierung Funktioneller Lebens- mittel (Characterization of functional food) Deutsche. Lebensmittel-Rundschau 95 468-47),  un cibo che oltre agli utilizzi legati ad aspetti nutrizionali o di piacere sensoriale, mostra utilizzi legati ad effetti di altro tipo sulle funzioni dell’organismo, e che occuperebbe una posizione mediana ma in parte distinta (una terza opzione) tra cibo e medicina. Per “cibo medicinale” (medicinal food) o “medicine alimentari” (food medicines), seguendo Pieroni e Quave (Pieroni, A. e Quave, C. “Functional foods or food medicines? On the consumption of wild plants among Albanians and Southern Italians in Lucania” in A., Pieroni e L., Leimar Price (eds.)  (2006) Eating and Healing, Haworth Press,  p. 110) intendiamo invece quell’area di sovrapposizione tra cibo e medicina, quando una pianta viene ingerita in un “contesto alimentare” allo scopo di ottenere uno specifico effetto medicinale. Il termine “nutraceutico” (dall’inglese nutraceutic, composto di nutritional e pharmaceutic) identifica una pianta alimentare o derivato che, grazie al contenuto in metaboliti secondari (al di la quindi del puro effetto nutritivo), può modificare la fisiologia umana ed in alcuni casi i processi patologici.

10. cfr Johns, T. e Kokwaro, J.O. (1991) “Food plants of the Luo of Siaya District, Kenya”. Economic Botany 45: 103-113.; Uiso F.C.  Determination of toxicological and nutritional factors of Crotalaria species used as indigenous vegetables. M.Sc.Thesis, Mc Gill University, 1991; Johns, T.  “Plant constituents and the nutrition and health of indigenous peoples”. In V.D., Nazarea (Ed.), Ethnoecology-Situated knowledge, located lives. Tucson: University of Arizona Press, 1990;  Johns, T., Mahunnah, R.L.A., Sanaya, P.,  Chapman, L. e Ticktin, T. (1999) Saponins and phenolic content in plant dietary additives of a traditional subsistence community, the Bateni of Ngorongoro District, Tanzania. Journal of Ethnopharmacology 66: 1-10.; Johns, T., Mhoro, E.B. e Sanaya, P. (1996) Food plants and masticants of the Batemi of Ngorongoro District, Tanzania. Economic Botany 50: 115-121.; Johns, T., Mhoro, E.B. e Uiso, F.C. (1996) Edible plants of Mara Region, Tanzania. Ecology of Food and Nutrition 35: 71-80; Parker M., Chabot S., Ole Karbolo M. K., Ward B. J., Johns T. A. “Traditional dietary additives of the Maasai are antiviral against the measles virus.”  Poster alla 8th International Congress of Ethnopharmacology, 2004, Canterbury, UK.

11. cfr. Evans Schultes R., Hoffmann, A. e Ratsch, C. Plants of the Gods:  Their sacred, healing, and hallucinogenic powers. Revised and expandend edition. Healing Arts Press, Vermont, 1998, pp. 144-155

12. Quave C.L. & Pieroni A. “Traditional health care and food and medicinal plant use among historic Albanian migrants and Italians in Lucania, southern Italy”. In A. Pieroni e I. Vandebroek (eds.) Traveling cultures and plants: The ethnobiology and ethnopharmacy of human migrations. Berghahn Books, Oxford, 2007

13. Sull’area di sovrapposizione tra piante come farmaco e come alimento, sul continuum che lega le piante spontanee a quelle domesticate, e sull’importanza di queste analisi per la comprensione della transizione tra caccia e raccolta e agricoltura, vedi la bella raccolta di saggi coordinata da Lisa Etkin (Etkin, N.L. (Ed.), Eating on the wild side. Tucson: University of Arizona Press. Etkin, N.L. (1996)). Per un esempio di testo scritto allo scopo di conservare il sapere locale sulle piante selvatiche ad utilizzo alimentare cfr. Ruffo C. K., Birnie A., Tegnas B. Edible Wild Plants of Tanzania. Technical Handbook No. 27 Regional Land Management Unit, Nairobi, Kenya, 2002.

14. Traduco con infestanti il termine weed, che in inglese denota appunto le piante che si trovano nel continuum della relazione uomo-piante, tra piante spontanee e piante coltivate. In questo continuum abbiamo le piante spontanee, che crescono al di fuori dell’habitat disturbato dall’uomo e che non possono con successo invadere permanentemente habitat disturbati dall’uomo; le piante infestanti, la cui popolazione cresce completamente o in maggioranza in situazioni marcatamente disturbate dall’uomo, senza essere deliberatamente coltivate, quasi sempre erbacee e a crescita veloce; le piante coltivate, piantate intenzionalmente. Ma vi sono anche le piante domesticate accidentalmente a causa dell’attività dei cacciatori-raccoglitori, e le piante domesticate, che si sono evolute in una nuova forma a causa della continua manipolazione, tanto che possono aver perso la capacità di riprodursi da sole (cfr. Zimdahl, R.L., Fundamentals of Weed Science, 2nd ed. Academic Press, San Diego, CA., 1992, p. 172); Etkin, N.L. “The cull of the wild”. In N.L., Etkin (Ed.), 1994 op. cit.; Etkin, N.L. (1996) “Medicinal cuisines: Diet and ethnopharmacology”. International Journal of Pharmacognosy 34: 313-326. Etkin, N.L. e Ross, P.J. (1982) “Food as medicine and medicine as food: An adaptive framework for the interpretation of plant utilisation among the Hausa of northern Nigeria”. Social Science and Medicine 16: 1559-1573. Grivetti, L.E. e Ogle B.M. (2000) “Value of traditional foods in meeting macro- and micronutrients needs: The wild plant connection”. Nutrition Research Review 13: 31-46

15. Unschuld, P.U. Medicine in China: a history of pharmaceutics, Berkeley, University of California Press, 1986, p.24.  Se teniamo presente che il termine “efficacia terapeutica” (wu-tu) si traduce come “non-velenosa”, possiamo capire come questi rimedi possano ben essere esemplificati da piante alimentari con azione terapeutica (e difatti troviamo qui rimedi come il Panax ginseng o la piantaggine che mostrano attività farmacologica secondo gli standard moderni, ma che possono essere assunti anche a lungo termine senza rischi). Questo favore verso i farmaci macrobiotici è evidente anche nel primo documento esistente che parla di rimedi vegetali, nei manoscritti medici di Mawangdui, risalenti al 3 e 2 secolo a.C., dove, pur non comparendo la divisione teorica tra rimedi di grado diverso, già si parla di rimedi che allungano la vita ecc. Il manoscritto MSVI.A.9 contiene la prima descrizione di una droga effettuata da un medico, Wen Zhi, descrive il porro (jiu) come la “pianta dei mille anni” e “re delle centinaia di piante”, che concentra i vapori (qi) dei cieli e della terra (cfr. Harper, D. (trad. e comm.) Early chinese medical literature: The Mawangdui medical manuscripts. Kegan Paul International, New York, 1997, p. 106)

16. cfr. Puri, H.S. Rasayana: Ayurvedic herbs for longevity and rejuvenation. Taylor & Francis, New York, 2003

17. Per molte attività umane, “non ha senso fornire una spiegazione evolutivo-adattiva (a meno che non si parli di adattamento evolutivo in senso culturale). Non è che [le attività umane] non abbiano radici biologiche. Semplicemente ne sono troppo lontane” (Rozin P (2000) “Evolution and adaption in the understanding of behavior, culture, and mind”. American Behavioral Scientist. 6 (43):970-986). Al più possiamo proporre una feconda commistione tra presupposti biologici e sviluppi culturali, raccontare la storia di questa relazione, nella speranza che nel racconto, nel processo storico e non nelle origini, si nascondano le ragioni ultime della situazione attuale, soprattutto guardando agli enormi cambiamenti culturali avvenuti nel brevissimo periodo nel quale l’uomo ha subito una evoluzione culturale. Come scrive Rozin 2000 op. cit. : “There is no doubt that humans are primates and that human cultures have influenced humans for only a small part of their evolutionary history; there is every reason to believe that we will find the precultural primate in many human activities. But even a casual glance at human cultures today will suggest that these tens of thousands of years of human culture have vastly transformed humans and their institutions and that it would be folly to expect to trace most of what humans do now to specific primate predispositions, except in the most indirect way.”

18. cfr. Johns T. The origins of human diet and medicine. University of Arizona Press, 1999, p. 2